Cellular and Molecular Bioengineering

, Volume 11, Issue 3, pp 163–174 | Cite as

Mouse Keratinocytes Without Keratin Intermediate Filaments Demonstrate Substrate Stiffness Dependent Behaviors

  • Hoda Zarkoob
  • Sathivel Chinnathambi
  • Spencer A. Halberg
  • John C. Selby
  • Thomas M. Magin
  • E. A. Sander



Traditionally thought to serve active vs. passive mechanical functions, respectively, a growing body of evidence suggests that actin microfilament and keratin intermediate filament (IF) networks, together with their associated cell–cell and cell–matrix anchoring junctions, may have a large degree of functional interdependence. Therefore, we hypothesized that the loss of keratin IFs in a knockout mouse keratinocyte model would affect the kinematics of colony formation, i.e., the spatiotemporal process by which individual cells join to form colonies and eventually a nascent epithelial sheet.


Time-lapse imaging and deformation tracking microscopy was used to observe colony formation for both wild type (WT) and keratin-deficient knockout (KO) mouse keratinocytes over 24 h. Cells were cultured under high calcium conditions on collagen-coated substrates with nominal stiffnesses of ~ 1.2 kPa (soft) and 24 kPa (stiff). Immunofluorescent staining of actin and selected adhesion proteins was also performed.


The absence of keratin IFs markedly affected cell morphology, spread area, and cytoskeleton and adhesion protein organization on both soft and stiff substrates. Strikingly, an absence of keratin IFs also significantly reduced the ability of mouse keratinocytes to mechanically deform the soft substrate. Furthermore, KO cells formed colonies more efficiently on stiff vs. soft substrates, a behavior opposite to that observed for WT keratinocytes.


Collectively, these data are strongly supportive of the idea that an interdependence between actin microfilaments and keratin IFs does exist, while further suggesting that keratin IFs may represent an important and under-recognized component of keratinocyte mechanosensation and the force generation apparatus.


Mechanosensing Keratins Polyacrylamide gels Traction microscopy Intermediate filaments Force 



Support of this work was provided by the National Science Foundation (National Science Foundation CAREER CMMI 1452728) and the Carver Charitable Trust #14-4384 and #18-5045. In addition, J.C.S. acknowledges the Dermatology Foundation for their support of this work through a career development award. Work in the Magin lab is supported by the DFG (German Research Council; MA1316-15, MA1316-17, MA1316-19, MA1316-21, INST 268/230-1).

Conflict of interest

Hoda Zarkoob, Sathivel Chinnathambi, Spencer A. Halberg, John C. Selby, Thomas M. Magin, and Edward A. Sander declare that they have no conflict of interest.

Ethical Standards

No human or animal studies or were carried out by the authors for this article.

Supplementary material

12195_2018_526_MOESM1_ESM.avi (73.1 mb)
Supplementary material 1 (AVI 74852 kb)
12195_2018_526_MOESM2_ESM.avi (72 mb)
Supplementary material 2 (AVI 73693 kb)
12195_2018_526_MOESM3_ESM.avi (101 mb)
Supplementary material 3 (AVI 103407 kb)
12195_2018_526_MOESM4_ESM.avi (76.1 mb)
Supplementary material 4 (AVI 77969 kb)


  1. 1.
    Achterberg, V. F., et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Investig. Dermatol. 134(7):1862–1872, 2014.CrossRefGoogle Scholar
  2. 2.
    Aghvami, M., K. Billiar, and E. A. Sander. Fiber network models predict enhanced cell mechanosensing on fibrous gels. ASME J. Biomech. Eng. 138(10):101006, 2016.CrossRefGoogle Scholar
  3. 3.
    Bordeleau, F., et al. Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of Rho-mediated actin cytoskeleton dynamics. PLoS ONE 7(6):e38780, 2012.CrossRefGoogle Scholar
  4. 4.
    Brennan, J. K., et al. Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro 11(6):354–360, 1975.CrossRefGoogle Scholar
  5. 5.
    Broussard, J. A., et al. The desmoplakin/intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28:3156–3164, 2017.CrossRefGoogle Scholar
  6. 6.
    Charras, G., and E. Sahai. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15(12):813, 2014.CrossRefGoogle Scholar
  7. 7.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.CrossRefGoogle Scholar
  8. 8.
    Eckes, B., et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 111(13):1897–1907, 1998.Google Scholar
  9. 9.
    Engler, A. J., et al. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  10. 10.
    Georges, P. C., and P. A. Janmey. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4):1547–1553, 2005.CrossRefGoogle Scholar
  11. 11.
    Goffin, J. M., et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172(2):259–268, 2006.CrossRefGoogle Scholar
  12. 12.
    Goldman, R. D., et al. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell Biol. 134(4):971–983, 1996.CrossRefGoogle Scholar
  13. 13.
    Green, K. J., et al. The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J. Cell Biol. 104(5):1389–1402, 1987.CrossRefGoogle Scholar
  14. 14.
    Hamill, K. J., et al. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol. Biol. Cell 20(12):2954–2962, 2009.CrossRefGoogle Scholar
  15. 15.
    Haupt, A., and N. Minc. How cells sense their own shape—mechanisms to probe cell geometry and their implications in cellular organization and function. J. Cell Sci. 131(6):jcs214015, 2018.CrossRefGoogle Scholar
  16. 16.
    Homberg, M., et al. Distinct impact of two keratin mutations causing epidermolysis bullosa simplex on keratinocyte adhesion and stiffness. J. Investig. Dermatol. 135(10):2437–2445, 2015.CrossRefGoogle Scholar
  17. 17.
    Hopkinson, S. B., et al. Focal contact and hemidesmosomal proteins in keratinocyte migration and wound repair. Adv. Wound Care 3(3):247–263, 2014.CrossRefGoogle Scholar
  18. 18.
    Hytönen, V. P., and B. Wehrle-Haller. Mechanosensing in cell–matrix adhesions—converting tension into chemical signals. Exp. Cell Res. 343(1):35–41, 2016.CrossRefGoogle Scholar
  19. 19.
    Janostiak, R., et al. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur. J. Cell Biol. 93(10–12):445–454, 2014.CrossRefGoogle Scholar
  20. 20.
    Kröger, C., et al. Keratins control intercellular adhesion involving PKC-α–mediated desmoplakin phosphorylation. J. Cell Biol. 201(5):681–692, 2013.CrossRefGoogle Scholar
  21. 21.
    Kumar, V., et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J. Cell Biol. 211(5):1057–1075, 2015.CrossRefGoogle Scholar
  22. 22.
    Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3(3):299–306, 2007.CrossRefGoogle Scholar
  23. 23.
    Lewis, J. E., P. J. Jensen, and M. J. Wheelock. Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J. Investig. Dermatol. 102(6):870–877, 1994.CrossRefGoogle Scholar
  24. 24.
    Loschke, F., M. Homberg, and T. M. Magin. Keratin isotypes control desmosome stability and dynamics through PKCalpha. J. Investig. Dermatol. 136(1):202–213, 2016.CrossRefGoogle Scholar
  25. 25.
    Mercurio, A. M., and I. Rabinovitz. Towards a mechanistic understanding of tumor invasion—lessons from the α6β4 integrin. Semin. Cancer Biol. 11(2):129–141, 2001.CrossRefGoogle Scholar
  26. 26.
    Nekrasova, O., et al. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat. Commun. 9(1):1053, 2018.CrossRefGoogle Scholar
  27. 27.
    Ozawa, T., et al. Dynamic relationship of focal contacts and hemidesmosome protein complexes in live cells. J. Investig. Dermatol. 130(6):1624–1635, 2010.CrossRefGoogle Scholar
  28. 28.
    Parsons, J. T., A. R. Horwitz, and M. A. Schwartz. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11(9):633, 2010.CrossRefGoogle Scholar
  29. 29.
    Pastar, I., et al. Epithelialization in wound healing: a comprehensive review. Adv. Wound Care 3(7):445–464, 2014.CrossRefGoogle Scholar
  30. 30.
    Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):13661–13665, 1997.CrossRefGoogle Scholar
  31. 31.
    Raghupathy, R., et al. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133(9):091011, 2011.CrossRefGoogle Scholar
  32. 32.
    Ramms, L., et al. Keratins as the main component for the mechanical integrity of keratinocytes. Proc. Natl. Acad. Sci. USA 110(46):18513–18518, 2013.CrossRefGoogle Scholar
  33. 33.
    Rudnicki, M. S., et al. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. Biophys. J. 105(1):11–20, 2013.CrossRefGoogle Scholar
  34. 34.
    Saha, K., et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9):4426–4438, 2008.CrossRefGoogle Scholar
  35. 35.
    Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2(12):a005066, 2010.CrossRefGoogle Scholar
  36. 36.
    Sehgal, B. U., et al. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J. Biol. Chem. 281(46):35487–35498, 2006.CrossRefGoogle Scholar
  37. 37.
    Selby, J.C., Mechanobiology of epidermal keratinocytes: desmosomes, hemidesmosomes, keratin intermediate filaments, and blistering skin diseases. In: Mechanobiology of Cell-Cell and Cell-Matrix Interactions. New York: Springer, pp. 169–210, 2011.Google Scholar
  38. 38.
    Seltmann, K., et al. Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc. Natl. Acad. Sci. USA 110(46):18507–18512, 2013.CrossRefGoogle Scholar
  39. 39.
    Tang, X., et al. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput. Biol. 10(6):e1003631, 2014.CrossRefGoogle Scholar
  40. 40.
    Trappmann, B., et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11(7):642–649, 2012.CrossRefGoogle Scholar
  41. 41.
    Tsuruta, D., et al. Hemidesmosomes and focal contact proteins: Functions and cross-talk in keratinocytes, bullous diseases and wound healing. J. Dermatol. Sci. 62(1):1–7, 2011.Google Scholar
  42. 42.
    Vijayaraj, P., et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187(2):175–184, 2009.CrossRefGoogle Scholar
  43. 43.
    Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279(5):C1345–C1350, 2000.CrossRefGoogle Scholar
  44. 44.
    Wang, N., and D. Stamenovic. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279(1):C188–C194, 2000.CrossRefGoogle Scholar
  45. 45.
    Wang, N., and D. Stamenovic. Mechanics of vimentin intermediate filaments. J. Muscle Res. Cell Motil. 23(5–6):535–540, 2002.CrossRefGoogle Scholar
  46. 46.
    Wang, Y., et al. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns 38(3):414–420, 2012.CrossRefGoogle Scholar
  47. 47.
    Windoffer, R., et al. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. J. Cell Biol. 194(5):669–678, 2011.CrossRefGoogle Scholar
  48. 48.
    Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60(1):24–34, 2005.CrossRefGoogle Scholar
  49. 49.
    Yip, C. Y., et al. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29(6):936–942, 2009.CrossRefGoogle Scholar
  50. 50.
    Zamansky, G. B., U. Nguyen, and I. N. Chou. An immunofluorescence study of the calcium-induced coordinated reorganization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. J. Investig. Dermatol. 97(6):985–994, 1991.CrossRefGoogle Scholar
  51. 51.
    Zarkoob, H., et al. Substrate stiffness affects human keratinocyte colony formation. Cell. Mol. Bioeng. 8(1):32–50, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Hoda Zarkoob
    • 1
  • Sathivel Chinnathambi
    • 1
  • Spencer A. Halberg
    • 1
  • John C. Selby
    • 2
  • Thomas M. Magin
    • 3
  • E. A. Sander
    • 1
  1. 1.Department of Biomedical Engineering, College of EngineeringUniversity of IowaIowa CityUSA
  2. 2.Department of Dermatology, Carver College of MedicineUniversity of IowaIowa CityUSA
  3. 3.Division of Cell and Developmental Biology and SIKT, Institute of BiologyUniversity of LeipzigLeipzigGermany

Personalised recommendations