Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes

Abstract

Introduction

Cell–cell communication plays a pivotal role in biological systems’ coordination and function. Electrical properties have been linked to specification and differentiation of stem cells into targeted progeny, such as neurons and cardiomyocytes. Currently, there is a critical need in developing new ways to complement fluorescent indicators, such as Ca2+-sensitive dyes, for direct electrophysiological measurements of cells and tissue. Here, we report a unique transparent and biocompatible graphene-based electrical platform that enables electrical and optical investigation of human embryonic stem cell-derived cardiomyocytes’ (hESC-CMs) intracellular processes and intercellular communication.

Methods

Graphene, a honeycomb sp2 hybridized two-dimensional carbon lattice, was synthesized using low pressure chemical vapor deposition system, and was tested for biocompatibility. Au and graphene microelectrode arrays (MEAs) were fabricated using well-established microfabrication methods. Au and graphene MEAs were interfaced with hESC-CMs to perform both optical and electrical recordings.

Results

Optical imaging and Raman spectroscopy confirmed the presence of monolayer graphene. Viability assay showed biocompatibility of graphene. Electrochemical characterization proved graphene’s functional activity. Nitric acid treatment further enhanced the electrochemical properties of graphene. Graphene electrodes’ transparency enabled both optical and electrical recordings from hESC-CMs. Graphene MEA detected changes in beating frequency and field potential duration upon β-adrenergic receptor agonist treatment.

Conclusion

The transparent graphene platform enables the investigation of both intracellular and intercellular communication processes and will create new avenues for bidirectional communication (sensing and stimulation) with electrically active tissues and will set the ground for investigations reported diseases such as Alzheimer, Parkinson’s disease and arrhythmias.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Bard, A. J., L. R. Faulkner, J. Leddy, and C. G. Zoski. Electrochemical Methods: Fundamentals and Applications, Vol. 2. New York: Wiley, 1980.

    Google Scholar 

  2. 2.

    Blake, P., E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, and A. Geim. Making graphene visible. Appl. Phys. Lett. 91(6):063124, 2007.

    Article  Google Scholar 

  3. 3.

    Buckingham, M., S. Meilhac, and S. Zaffran. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6(11):826–835, 2005.

    Article  Google Scholar 

  4. 4.

    Burridge, P. W., E. Matsa, P. Shukla, Z. C. Lin, J. M. Churko, A. D. Ebert, F. Lan, S. Diecke, B. Huber, and N. M. Mordwinkin. Chemically defined generation of human cardiomyocytes. Nat. Methods 11(8):855–860, 2014.

    Article  Google Scholar 

  5. 5.

    Caspi, O., I. Itzhaki, I. Kehat, A. Gepstein, G. Arbel, I. Huber, J. Satin, and L. Gepstein. In vitro electrophysiological drug testing using human embryonic stem cell derived cardiomyocytes. Stem Cells Dev. 18(1):161–172, 2009.

    Article  Google Scholar 

  6. 6.

    Chen, G., D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, K. Smuga-Otto, S. E. Howden, N. R. Diol, and N. E. Propson. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8(5):424–429, 2011.

    Article  Google Scholar 

  7. 7.

    Clements, M., and N. Thomas. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol. Sci. 140(2):445–461, 2014.

    Article  Google Scholar 

  8. 8.

    Cohen-Karni, T., Q. Qing, Q. Li, Y. Fang, and C. M. Lieber. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 10(3):1098–1102, 2010.

    Article  Google Scholar 

  9. 9.

    Deep-Brain Stimulation for Parkinson’s Disease Study. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345(13):956–963, 2001.

    Article  Google Scholar 

  10. 10.

    Deisseroth, K. Optogenetics. Nat. Methods 8(1):26–29, 2011.

    Article  Google Scholar 

  11. 11.

    Duranteau, J., N. S. Chandel, A. Kulisz, Z. Shao, and P. T. Schumacker. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J. Biol. Chem. 273(19):11619–11624, 1998.

    Article  Google Scholar 

  12. 12.

    Epstein, A. E., J. P. DiMarco, K. A. Ellenbogen, N. A. Estes, 3rd, R. A. Freedman, L. S. Gettes, A. M. Gillinov, G. Gregoratos, S. C. Hammill, D. L. Hayes, M. A. Hlatky, L. K. Newby, R. L. Page, M. H. Schoenfeld, M. J. Silka, L. W. Stevenson, M. O. Sweeney, S. C. Smith, Jr, A. K. Jacobs, C. D. Adams, J. L. Anderson, C. E. Buller, M. A. Creager, S. M. Ettinger, D. P. Faxon, J. L. Halperin, L. F. Hiratzka, S. A. Hunt, H. M. Krumholz, F. G. Kushner, B. W. Lytle, R. A. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, L. G. Tarkington, and C. W. Yancy. American College of Cardiology/American Heart Association Task Force on Practice, G.; American Association for Thoracic, S.; Society of Thoracic, S., ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 51(21):e1–e62, 2008.

    Article  Google Scholar 

  13. 13.

    Fang, T., A. Konar, H. Xing, and D. Jena. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 91(9):092109, 2007.

    Article  Google Scholar 

  14. 14.

    Feinberg, A. W., C. M. Ripplinger, P. Van Der Meer, S. P. Sheehy, I. Domian, K. R. Chien, and K. K. Parker. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Rep. 1(5):387–396, 2013.

    Article  Google Scholar 

  15. 15.

    Geim, A. K. Graphene: status and prospects. Science 324(5934):1530–1534, 2009.

    Article  Google Scholar 

  16. 16.

    Gross, G. W., W. Y. Wen, and J. W. Lin. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures. J. Neurosci. Methods 15(3):243–252, 1985.

    Article  Google Scholar 

  17. 17.

    Hayakawa, T., T. Kunihiro, T. Ando, S. Kobayashi, E. Matsui, H. Yada, Y. Kanda, J. Kurokawa, and T. Furukawa. Image-based evaluation of contraction–relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: correlation and complementarity with extracellular electrophysiology. J. Mol. Cell. Cardiol. 77:178–191, 2014.

    Article  Google Scholar 

  18. 18.

    Herron, T. J., P. Lee, and J. Jalife. Optical imaging of voltage and calcium in cardiac cells and tissues. Circ. Res. 110(4):609–623, 2012.

    Article  Google Scholar 

  19. 19.

    Huang, S., A. A. Heikal, and W. W. Webb. Two-photon fluorescence spectroscopy and microscopy of NAD (P) H and flavoprotein. Biophys. J. 82(5):2811–2825, 2002.

    Article  Google Scholar 

  20. 20.

    Itzhaki, I., S. Rapoport, I. Huber, I. Mizrahi, L. Zwi-Dantsis, G. Arbel, J. Schiller, and L. Gepstein. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PloS ONE 6(4):e18037, 2011.

    Article  Google Scholar 

  21. 21.

    Kasry, A., M. A. Kuroda, G. J. Martyna, G. S. Tulevski, and A. A. Bol. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 4(7):3839–3844, 2010.

    Article  Google Scholar 

  22. 22.

    Kehat, I., A. Gepstein, A. Spira, J. Itskovitz-Eldor, and L. Gepstein. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes. Circ. Res. 91(8):659–661, 2002.

    Article  Google Scholar 

  23. 23.

    Kehat, I., D. Kenyagin-Karsenti, M. Snir, H. Segev, M. Amit, A. Gepstein, E. Livne, O. Binah, J. Itskovitz-Eldor, and L. Gepstein. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108(3):407, 2001.

    Article  Google Scholar 

  24. 24.

    Kireev, D., S. Seyock, M. Ernst, V. Maybeck, B. Wolfrum, and A. Offenhäusser. Versatile flexible graphene multielectrode arrays. Biosensors 7(1):1, 2016.

    Article  Google Scholar 

  25. 25.

    Kovács, M., J. Tóth, C. Hetényi, A. Málnási-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34):35557–35563, 2004.

    Article  Google Scholar 

  26. 26.

    Kuzum, D., H. Takano, E. Shim, J. C. Reed, H. Juul, A. G. Richardson, J. de Vries, H. Bink, M. A. Dichter, and T. H. Lucas. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5:5259, 2014.

    Article  Google Scholar 

  27. 27.

    Kwon, J., W. Seung, B. K. Sharma, S.-W. Kim, and J.-H. Ahn. A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes. Energy Environ. Sci. 5(10):8970–8975, 2012.

    Article  Google Scholar 

  28. 28.

    Lee, S., J.-S. Yeo, Y. Ji, C. Cho, D.-Y. Kim, S.-I. Na, B. H. Lee, and T. Lee. Flexible organic solar cells composed of P3HT: PCBM using chemically doped graphene electrodes. Nanotechnology 23(34):344013, 2012.

    Article  Google Scholar 

  29. 29.

    Lian, X., J. Zhang, S. M. Azarin, K. Zhu, L. B. Hazeltine, X. Bao, C. Hsiao, T. J. Kamp, and S. P. Palecek. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8(1):162–175, 2013.

    Article  Google Scholar 

  30. 30.

    Martin-Puig, S., Z. Wang, and K. R. Chien. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell 2(4):320–331, 2008.

    Article  Google Scholar 

  31. 31.

    Mataev, E., S. K. Rastogi, A. Madhusudan, J. Bone, N. Lamprinakos, Y. Picard, and T. Cohen-Karni. Synthesis of group IV nanowires on graphene: the case of Ge nanocrawlers. Nano Lett. 16(8):5267–5272, 2016.

    Article  Google Scholar 

  32. 32.

    Meyer, T., K.-H. Boven, E. Günther, and M. Fejtl. Micro-electrode arrays in cardiac safety pharmacology. Drug Saf. 27(11):763–772, 2004.

    Article  Google Scholar 

  33. 33.

    Mummery, C., D. Ward, C. Van Den Brink, S. Bird, P. Doevendans, T. Opthof, D. La Riviere, A. Brutel, L. Tertoolen, and M. Van Der Heyden. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200(3):233–242, 2002.

    Article  Google Scholar 

  34. 34.

    Nakahara, M. The Science of Color. Tokyo: Baifukan, 2002.

    Google Scholar 

  35. 35.

    Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science 306(5696):666–669, 2004.

    Article  Google Scholar 

  36. 36.

    Otsuji, T. G., I. Minami, Y. Kurose, K. Yamauchi, M. Tada, and N. Nakatsuji. Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res. 4(3):201–213, 2010.

    Article  Google Scholar 

  37. 37.

    Park, D.-W., A. A. Schendel, S. Mikael, S. K. Brodnick, T. J. Richner, J. P. Ness, M. R. Hayat, F. Atry, S. T. Frye, and R. Pashaie. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5:6258, 2014.

    Google Scholar 

  38. 38.

    Pascut, F. C., H. T. Goh, N. Welch, L. D. Buttery, C. Denning, and I. Notingher. Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells. Biophys. J. 100(1):251–259, 2011.

    Article  Google Scholar 

  39. 39.

    Qiang, Y., K. J. Seo, X. Zhao, P. Artoni, N. H. Golshan, S. Culaclii, P. M. Wang, W. Liu, K. S. Ziemer, and M. Fagiolini. Bilayer nanomesh structures for transparent recording and stimulating microelectrodes. Adv. Funct. Mater. 2017. https://doi.org/10.1002/adfm.201704117.

    Article  Google Scholar 

  40. 40.

    Rastogi, S. K., G. Raghavan, G. Yang, and T. Cohen-Karni. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett. 17(5):3297–3301, 2017.

    Article  Google Scholar 

  41. 41.

    Saito, R., M. Hofmann, G. Dresselhaus, A. Jorio, and M. Dresselhaus. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3):413–550, 2011.

    Article  Google Scholar 

  42. 42.

    Smith, S. W. The Scientist and Engineer’s Guide to Digital Signal Processing. San Diego: California Technical Publishing, 1997.

    Google Scholar 

  43. 43.

    Spira, M. E., and A. Hai. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2):83–94, 2013.

    Article  Google Scholar 

  44. 44.

    Stroh, A., H. C. Tsai, L. P. Wang, F. Zhang, J. Kressel, A. Aravanis, N. Santhanam, K. Deisseroth, A. Konnerth, and M. B. Schneider. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29(1):78–88, 2011.

    Article  Google Scholar 

  45. 45.

    Suk, J. W., A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5(9):6916–6924, 2011.

    Article  Google Scholar 

  46. 46.

    Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, and J. M. Jones. Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147, 1998.

    Article  Google Scholar 

  47. 47.

    Tohyama, S., F. Hattori, M. Sano, T. Hishiki, Y. Nagahata, T. Matsuura, H. Hashimoto, T. Suzuki, H. Yamashita, and Y. Satoh. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12(1):127–137, 2013.

    Article  Google Scholar 

  48. 48.

    Wang, G., L. Zhang, and J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2):797–828, 2012.

    Article  Google Scholar 

  49. 49.

    Xia, J., F. Chen, J. Li, and N. Tao. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4(8):505, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

T. Cohen-Karni would like to thank the National Science Foundation (CBET1552833) and the Office of Naval Research (N000141712368). The authors would also like to thank Carnegie Mellon University Nanofabrication Facility, and the Department of Materials Science and Engineering Materials Characterization Facility (MCF).

Conflict of interest

Sahil K. Rastogi, Jacqueline Bliley, Daniel J. Shiwarski, Guruprasad Raghavan, Adam W. Feinberg and Tzahi Cohen-Karni declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tzahi Cohen-Karni.

Additional information

Tzahi Cohen-Karni is an assistant professor at the departments of Biomedical Engineering and Materials Science and Engineering in Carnegie Mellon University, Pittsburgh PA USA. He received both his B.Sc. degree in Materials Engineering and the B.A. degree in Chemistry from the Technion Israel Institute of Technology, Haifa, Israel, in 2004. His M.Sc. degree in Chemistry from Weizmann Institute of Science, Rehovot, Israel, in 2006 and his Ph.D. in Applied Physics from the School of Engineering and Applied Sciences, Harvard University, Cambridge MA, USA, in 2011. He was a Juvenile Diabetes Research Foundation (JDRF) Postdoctoral Fellow at the Massachusetts Institute of Technology and Boston Children’s Hospital at the labs of Robert Langer and Daniel S. Kohane from 2011 to 2013. Dr. Cohen-Karni received the Gold Graduate Student Award from the Materials Research Society in 2009, and received the 2012 International Union of Pure and Applied Chemistry Young Chemist Award. In 2014, he was awarded the Charles E. Kaufman Foundation Young Investigator Research Award. In 2016, Dr. Cohen-Karni was awarded the NSF CAREER Award. In 2017, Dr. Cohen-Karni was awarded the Cellular and Molecular Bioengineering Rising Star Award, The Office of Naval Research Young Investigator Award and The George Tallman Ladd Research Award.

figurea

This article is part of the 2018 CMBE Young Innovators special issue.

Associate Editor William E. Bentley oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 13959 kb)

Supplementary material 2 (MP4 18151 kb)

Supplementary material 3 (DOCX 10526 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rastogi, S.K., Bliley, J., Shiwarski, D.J. et al. Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes. Cel. Mol. Bioeng. 11, 407–418 (2018). https://doi.org/10.1007/s12195-018-0525-z

Download citation

Keywords

  • Transparent electrodes
  • Calcium imaging
  • High spatial and temporal resolution
  • Bioelectronics
  • hESC-CM
  • Graphene