Skip to main content
Log in

Comparison of Candidate Cell Populations for the Recellularization of Decellularized Heart Valves

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript



Heart valve tissue engineering may provide improved treatment for valvular heart disease, yet development of a tissue engineered heart valve (TEHV) has been limited by incomplete recellularization of the valve leaflets. In this study, we compare the leaflet recellularization potential of candidate cell populations.


Four cell populations were tested: bone marrow mononuclear cells (MNC), 5 million bone marrow mesenchymal stem cells (MSC), 10 million bone marrow mesenchymal stem cells (MSC2), and 5 million valve interstitial cells (VIC). Candidate cell populations were seeded onto decellularized heart valves and underwent similar conditioning in a low-flow bioreactor for 2 weeks.


MSC2 valves demonstrated the best recellularization of the interstitial leaflet tissue as well as an appropriate cell phenotype, mechanical properties, and biochemical composition. MSC valves exhibited similar leaflet repopulation, yet had decreased mechanical and biochemical properties. MNC seeding resulted in minimal recellularization of the leaflet, though an additional time point group found cells present after 3 days, which seemed to disappear at 2 weeks. VIC seeding resulted in cell clumping on the leaflet surface and poor recellularization.


The results of this study suggest mesenchymal stem cells are a preferred cell population for TEHV recellularization. Additionally, MSCs demonstrate the ability for repopulation of the distal valve leaflet, which will lead to more complete recellularization of future TEHVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others


  1. Alvarez-Viejo, M., Y. Menendez-Menendez, M. A. Blanco-Gelaz, A. Ferrero-Gutierrez, M. A. Fernandez-Rodriguez, J. Gala, and J. Otero-Hernandez. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transpl. Proc. 45:434–439, 2013.

    Article  Google Scholar 

  2. Blevins, T. L., J. L. Carroll, A. M. Raza, and K. J. Grande-Allen. Phenotypic characterization of isolated valvular interstitial cell subpopulations. J. Heart Valve Dis. 15:815–822, 2006.

    Google Scholar 

  3. Converse, G. L., M. Armstrong, R. W. Quinn, E. E. Buse, M. L. Cromwell, S. J. Moriarty, G. K. Lofland, S. L. Hilbert, and R. A. Hopkins. Effects of cryopreservation, decellularization and novel extracellular matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve leaflet. Acta Biomater. 8:2722–2729, 2012.

    Article  Google Scholar 

  4. Converse, G. L., E. E. Buse, and R. A. Hopkins. Bioreactors and operating room centric protocols for clinical heart valve tissue engineering. Prog. Pediatr. Cardiol. 35:95–100, 2013.

    Article  Google Scholar 

  5. Converse, G. L., E. E. Buse, K. R. Neill, C. R. McFall, H. N. Lewis, M. C. VeDepo, R. W. Quinn, and R. A. Hopkins. Design and efficacy of a single-use bioreactor for heart valve tissue engineering. J. Biomed. Mater. Res. B 105:249–259, 2015.

    Article  Google Scholar 

  6. Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372, 2006.

    Article  Google Scholar 

  7. Dohmen, P. M., S. Hauptmann, A. Terytze, and W. F. Konertz. In-vivo repopularization of a tissue-engineered heart valve in a human subject. J. Heart Valve Dis. 16:447–449, 2007.

    Google Scholar 

  8. Duan, B., L. A. Hockaday, S. Das, C. Xu, and J. T. Butcher. Comparison of mesenchymal stem cell source differentiation toward human pediatric aortic valve interstitial cells within 3D engineered matrices. Tissue Eng. C 21:795–807, 2015.

    Article  Google Scholar 

  9. Filip, D. A., A. Radu, and M. Simionescu. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59:310–320, 1986.

    Article  Google Scholar 

  10. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49, 2000.

    Article  Google Scholar 

  11. Hof, A., S. Raschke, K. Baier, L. Nehrenheim, J. I. Selig, M. Schomaker, A. Lichtenberg, H. Meyer, and P. Akhyari. Challenges in developing a reseeded, tissue-engineered aortic valve prosthesis. Eur. J. Cardiothorac. Surg. 50:446–455, 2016.

    Article  Google Scholar 

  12. Hopkins, R. From cadaver harvested homograft valves to tissue-engineered valve conduits. Prog. Pediatr. Cardiol. 21:137–152, 2006.

    Article  Google Scholar 

  13. Jana, S., R. T. Tranquillo, and A. Lerman. Cells for tissue engineering of cardiac valves. J. Tissue Eng. Regen. Med. 10:804–824, 2015.

    Article  Google Scholar 

  14. Kurobe, H., S. Tara, M. W. Maxfield, K. A. Rocco, P. S. Bagi, T. Yi, B. V. Udelsman, E. W. Dean, R. Khosravi, H. M. Powell, T. Shinoka, and C. K. Breuer. Comparison of the biological equivalence of two methods for isolating bone marrow mononuclear cells for fabricating tissue-engineered vascular grafts. Tissue Eng. C 21:597–604, 2015.

    Article  Google Scholar 

  15. Lichtenberg, A., I. Tudorache, S. Cebotari, S. Ringes-Lichtenberg, G. Sturz, K. Hoeffler, C. Hurscheler, G. Brandes, A. Hilfiker, and A. Haverich. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229, 2006.

    Article  Google Scholar 

  16. Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.

    Article  Google Scholar 

  17. Pacelli, S., S. Basu, J. Whitlow, A. Chakravarti, F. Acosta, A. Varshney, S. Modaresi, C. Berkland, and A. Paul. Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration. Adv. Drug. Deliv. Rev. 120:50–70, 2017.

    Article  Google Scholar 

  18. Quinn, R. W., S. L. Hilbert, A. A. Bert, B. W. Drake, J. A. Bustamante, J. E. Fenton, S. J. Moriarty, S. L. Neighbors, G. K. Lofland, and R. A. Hopkins. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep. Ann. Thorac. Surg. 92:131–137, 2011.

    Article  Google Scholar 

  19. Quinn, R., S. Hilbert, G. Converse, A. Bert, E. Buse, W. Drake, M. Armstrong, S. Moriarty, G. Lofland, and R. Hopkins. Enhanced autologous re-endothelialization of decellularized and extracellular matrix conditioned allografts implanted into the right ventricular outflow tracts of juvenile sheep. Cardiovasc. Eng. Technol. 3:217–227, 2012.

    Article  Google Scholar 

  20. Roh, J. D., R. Sawh-Martinez, M. P. Brennan, S. M. Jay, L. Devine, D. A. Rao, T. Yi, T. L. Mirensky, A. Nalbandian, B. Udelsman, N. Hibino, T. Shinoka, W. M. Saltzman, E. Snyder, T. R. Kyriakides, J. S. Pober, and C. K. Breuer. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc. Natl. Acad. Sci. USA 107:4669–4674, 2010.

    Article  Google Scholar 

  21. Spaggiari, G. M., A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333, 2008.

    Article  Google Scholar 

  22. Steinhoff, G., U. Stock, N. Karim, H. Mertsching, A. Timke, R. R. Meliss, K. Pethig, A. Haverich, and A. Bader. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–III55, 2000.

    Article  Google Scholar 

  23. Taylor, P. M., P. Batten, N. J. Brand, P. S. Thomas, and M. H. Yacoub. The cardiac valve interstitial cell. Int. J. Biochem. Cell. Biol. 35:113–118, 2003.

    Article  Google Scholar 

  24. VeDepo, M. C., E. E. Buse, R. W. Quinn, T. Williams, M. S. Detamore, R. A. Hopkins, and G. L. Converse. Species-specific effects of aortic valve decellularization. Acta Biomater. 50:249–258, 2017.

    Article  Google Scholar 

  25. VeDepo, M. C., M. Detamore, R. A. Hopkins, and G. L. Converse. Recellularization of decellularized heart valves: progress toward the tissue-engineered heart valve. J. Tissue Eng. 8:2041731417726327, 2017.

    Article  Google Scholar 

  26. Vincentelli, A., F. Wautot, F. Juthier, O. Fouquet, D. Corseaux, S. Marechaux, T. Le Tourneau, O. Fabre, S. Susen, E. Van Belle, F. Mouquet, C. Decoene, A. Prat, and B. Jude. In vivo autologous recellularization of a tissue-engineered heart valve: are bone marrow mesenchymal stem cells the best candidates? J. Thorac. Cardiovasc. Surg. 134:424–432, 2007.

    Article  Google Scholar 

  27. Weber, B., J. Scherman, M. Y. Emmert, J. Gruenenfelder, R. Verbeek, M. Bracher, M. Black, J. Kortsmit, T. Franz, R. Schoenauer, L. Baumgartner, C. Brokopp, I. Agarkova, P. Wolint, G. Zund, V. Falk, P. Zilla, and S. P. Hoerstrup. Injectable living marrow stromal cell-based autologous tissue engineered heart valves: first experiences with a one-step intervention in primates. Eur. Heart J. 32:2830–2840, 2011.

    Article  Google Scholar 

Download references


AP acknowledges an investigator grant provided by the Institutional Development Award from the National Institute of General Medical Sciences of the NIH Award Number P20GM103638 and Umbilical Cord Matrix Project fund form the State of Kansas.

Conflict of interest

VeDepo M., Buse E., Paul A., Hopkins R., and Converse G. all declare that they have no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Specifically, ovine aortic valves were harvested from juvenile sheep under approved IACUC protocols and in accordance with Guide for Care and Use of Laboratory Animals (National Institutes of Health Publication No. 85-23). This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mitchell VeDepo.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VeDepo, M., Buse, E., Paul, A. et al. Comparison of Candidate Cell Populations for the Recellularization of Decellularized Heart Valves. Cel. Mol. Bioeng. 11, 197–209 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: