Cellular and Molecular Bioengineering

, Volume 11, Issue 5, pp 337–352 | Cite as

Microenvironmental Modulation of Calcium Wave Propagation Velocity in Engineered Cardiac Tissues

  • Andrew P. Petersen
  • Davi M. Lyra-Leite
  • Nethika R. Ariyasinghe
  • Nathan Cho
  • Celeste M. Goodwin
  • Joon Young Kim
  • Megan L. McCainEmail author



In the myocardium, rapid propagation of action potentials and subsequent calcium waves is critical for synchronizing the contraction of cardiac myocytes and maximizing cardiac output. In many pathological settings, diverse remodeling of the tissue microenvironment is correlated with arrhythmias and decreased cardiac output, but the precise impact of tissue remodeling on propagation is not completely understood. Our objective was to delineate how multiple features within the cardiac tissue microenvironment modulate propagation velocity.


To recapitulate diverse myocardial tissue microenvironments, we engineered substrates with tunable elasticity, patterning, composition, and topography using two formulations of polydimethylsiloxane (PDMS) micropatterned with fibronectin and gelatin hydrogels with flat or micromolded features. We cultured neonatal rat ventricular myocytes on these substrates and quantified cell density, tissue alignment, and cell shape. We used a fluorescent calcium indicator, high-speed microscopy, and newly-developed analysis software to record and quantify calcium wave propagation velocity (CPV).


For all substrates, tissue alignment and cell aspect ratio were higher in aligned compared to isotropic tissues. Isotropic CPV and longitudinal CPV were similar across conditions, but transverse CPV was lower on micromolded gelatin hydrogels compared to micropatterned soft and stiff PDMS. In aligned tissues, the anisotropy ratio of CPV (longitudinal CPV/transverse CPV) was lower on micropatterned soft PDMS compared to micropatterned stiff PDMS and micromolded gelatin hydrogels.


Propagation velocity in engineered cardiac tissues is sensitive to features in the tissue microenvironment, such as alignment, matrix elasticity, and matrix topography, which may underlie arrhythmias in conditions with pathological tissue remodeling.


Cardiac myocytes Microfabrication Micromolding Microcontact printing Extracellular matrix Elastic modulus Calcium imaging 



This work was funded by the USC Viterbi School of Engineering, the USC Graduate School (Rose Hills Fellowship to APP, Annenberg Fellowship to DML, and Provost Fellowship to NRA and NC), the American Heart Association Scientist Development Grant 16SDG29950005 to MLM, USC Women in Science and Engineering to MLM and CMG, and the USC Provost Undergraduate Fellowship to JYK. We also thank the W. M. Keck Foundation Photonics Center Cleanroom for access to photolithography equipment.

Conflict of interest

Andrew P. Petersen, Davi M. Lyra-Leite, Nethika R. Ariyasinghe, Nathan Cho, Celeste M. Goodwin, Joon Young Kim, and Megan L. McCain declare that they have no conflict of interest.

Human/Animal Rights

No human studies were carried out by the authors for this article. All laboratory animals involved in this research were cared for and used in accordance with all institutional and national guidelines using only protocols approved by the University of Southern California Institutional Animal Care and Use Committee.

Supplementary material

12195_2018_522_MOESM1_ESM.avi (113.2 mb)
Supplementary material 1 (AVI 115910 kb)
12195_2018_522_MOESM2_ESM.pdf (163 kb)
Supplementary material 2 (PDF 163 kb)


  1. 1.
    Agarwal, A., J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608, 2013.CrossRefGoogle Scholar
  2. 2.
    Ariyasinghe, N. R., C. H. Reck, A. A. Viscio, A. P. Petersen, D. M. Lyra-Leite, N. Cho, and M. L. McCain. Engineering micromyocardium to delineate cellular and extracellular regulation of myocardial tissue contractility. Integr. Biol. 9:730–741, 2017.CrossRefGoogle Scholar
  3. 3.
    Berk, B. C., K. Fujiwara, and S. Lehoux. ECM remodeling in hypertensive heart disease. J. Clin. Invest. 117:568–575, 2007.CrossRefGoogle Scholar
  4. 4.
    Berry, M. F., A. J. Engler, Y. J. Woo, T. J. Pirolli, L. T. Bish, V. Jayasankar, K. J. Morine, T. J. Gardner, D. E. Discher, and H. L. Sweeney. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol. Heart Circ. Physiol. 290:H2196–H2203, 2006.CrossRefGoogle Scholar
  5. 5.
    Bers, D. M. Cardiac excitation–contraction coupling. Nature 415:198–205, 2002.CrossRefGoogle Scholar
  6. 6.
    Bettadapur, A., G. C. Suh, N. A. Geisse, E. R. Wang, C. Hua, H. A. Huber, A. A. Viscio, J. Y. Kim, J. B. Strickland, and M. L. McCain. Prolonged culture of aligned skeletal myotubes on micromolded gelatin hydrogels. Sci. Rep. 6:28855, 2016.CrossRefGoogle Scholar
  7. 7.
    Boothe, S. D., J. D. Myers, S. Pok, J. Sun, Y. Xi, R. M. Nieto, J. Cheng, and J. G. Jacot. The effect of substrate stiffness on cardiomyocyte action potentials. Cell Biochem. Biophys. 74:527–535, 2016.CrossRefGoogle Scholar
  8. 8.
    Burchfield, J. S., M. Xie, and J. A. Hill. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128:388–400, 2013.CrossRefGoogle Scholar
  9. 9.
    Bursac, N., K. K. Parker, S. Iravanian, and L. Tung. Cardiomyocyte cultures with controlled macroscopic anisotropy: a model for functional electrophysiological studies of cardiac muscle. Circ. Res. 91:e45–e54, 2002.CrossRefGoogle Scholar
  10. 10.
    Cabo, C., J. Yao, P. A. Boyden, S. Chen, W. Hussain, H. S. Duffy, E. J. Ciaccio, N. S. Peters, and A. L. Wit. Heterogeneous gap junction remodeling in reentrant circuits in the epicardial border zone of the healing canine infarct. Cardiovasc. Res. 72:241–249, 2006.CrossRefGoogle Scholar
  11. 11.
    Chatterjee, S., C. Bavishi, P. Sardar, V. Agarwal, P. Krishnamoorthy, T. Grodzicki, and F. H. Messerli. Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. Am. J. Cardiol. 114:1049–1052, 2014.CrossRefGoogle Scholar
  12. 12.
    Chung, C. Y., H. Bien, and E. Entcheva. The role of cardiac tissue alignment in modulating electrical function. J. Cardiovasc. Electrophysiol. 18:1323–1329, 2007.CrossRefGoogle Scholar
  13. 13.
    Conrad, C. H., W. W. Brooks, J. A. Hayes, S. Sen, K. G. Robinson, and O. H. Bing. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91:161–170, 1995.CrossRefGoogle Scholar
  14. 14.
    Doering, C. W., J. E. Jalil, J. S. Janicki, R. Pick, S. Aghili, C. Abrahams, and K. T. Weber. Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc. Res. 22:686–695, 1988.CrossRefGoogle Scholar
  15. 15.
    Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-Like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.CrossRefGoogle Scholar
  16. 16.
    Feinberg, A. W., P. W. Alford, H. Jin, C. M. Ripplinger, A. A. Werdich, S. P. Sheehy, A. Grosberg, and K. K. Parker. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33:5732–5741, 2012.CrossRefGoogle Scholar
  17. 17.
    Feinberg, A. W., and K. K. Parker. Surface-initiated assembly of protein nanofabrics. Nanoletters 10:2184–2191, 2010.CrossRefGoogle Scholar
  18. 18.
    Gerdes, A. M. Cardiac myocyte remodeling in hypertrophy and progression to failure. J. Card. Fail. 8:S264–S268, 2002.CrossRefGoogle Scholar
  19. 19.
    Grosberg, A., P. W. Alford, M. L. McCain, and K. K. Parker. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173, 2011.CrossRefGoogle Scholar
  20. 20.
    Grossman, W., D. Jones, and L. P. McLaurin. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56:56–64, 1975.CrossRefGoogle Scholar
  21. 21.
    Ho, C. Y., B. Lopez, O. R. Coelho-Filho, N. K. Lakdawala, A. L. Cirino, P. Jarolim, R. Kwong, A. Gonzalez, S. D. Colan, J. G. Seidman, J. Diez, and C. E. Seidman. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363:552–563, 2010.CrossRefGoogle Scholar
  22. 22.
    Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95:3479–3487, 2008.CrossRefGoogle Scholar
  23. 23.
    Jang, S., R. R. Vanderpool, R. Avazmohammadi, E. Lapshin, T. N. Bachman, M. Sacks, and M. A. Simon. Biomechanical and hemodynamic measures of right ventricular diastolic function: translating tissue biomechanics to clinical relevance. J. Am. Heart. Assoc. 6(9):e006084, 2017.CrossRefGoogle Scholar
  24. 24.
    Kim, D. H., E. A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K. Y. Suh, L. Tung, and A. Levchenko. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl. Acad. Sci. USA 107:565–570, 2010.CrossRefGoogle Scholar
  25. 25.
    Kleber, A. G., and Y. Rudy. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431–488, 2004.CrossRefGoogle Scholar
  26. 26.
    Kong, W., R. E. Ideker, and V. G. Fast. Intramural optical mapping of v(m) and ca(i)2 + during long-duration ventricular fibrillation in canine hearts. Am. J. Physiol. Heart Circ. Physiol. 302:H1294–H1305, 2012.CrossRefGoogle Scholar
  27. 27.
    Lyra-Leite, D. M., A. M. Andres, A. P. Petersen, N. R. Ariyasinghe, N. Cho, J. A. Lee, R. A. Gottlieb, and M. L. McCain. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. Am. J. Physiol. Heart Circ. Physiol. 313:H757–H767, 2017.CrossRefGoogle Scholar
  28. 28.
    Matsushita, T., M. Oyamada, K. Fujimoto, Y. Yasuda, S. Masuda, Y. Wada, T. Oka, and T. Takamatsu. Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ. Res. 85:1046–1055, 1999.CrossRefGoogle Scholar
  29. 29.
    McCain, M. L., A. Agarwal, H. W. Nesmith, A. P. Nesmith, and K. K. Parker. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35:5462–5471, 2014.CrossRefGoogle Scholar
  30. 30.
    McCain, M. L., T. Desplantez, N. A. Geisse, B. Rothen-Rutishauser, H. Oberer, K. K. Parker, and A. G. Kleber. Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between c×43 immunofluorescence and intercellular electrical conductance. Am. J. Physiol. Heart Circ. Physiol. 302:H443–H450, 2012.CrossRefGoogle Scholar
  31. 31.
    McCain, M. L., S. P. Sheehy, A. Grosberg, J. A. Goss, and K. K. Parker. Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. Proc. Natl. Acad. Sci. USA 110:9770–9775, 2013.CrossRefGoogle Scholar
  32. 32.
    McCain, M. L., H. Yuan, F. S. Pasqualini, P. H. Campbell, and K. K. Parker. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility. Am. J. Physiol. Heart Circ. Physiol. 306:H1525–H1539, 2014.CrossRefGoogle Scholar
  33. 33.
    Natarajan, A., M. Stancescu, V. Dhir, C. Armstrong, F. Sommerhage, J. J. Hickman, and P. Molnar. Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials 32:4267–4274, 2011.CrossRefGoogle Scholar
  34. 34.
    Navarrete, E. G., P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P. W. Burridge, B. Patlolla, A. S. Lee, H. Wu, R. E. Beygui, S. M. Wu, R. C. Robbins, D. M. Bers, and J. C. Wu. Screening Drug-Induced arrhythmia using human induced pluripotent stem Cell-Derived cardiomyocytes and Low-Impedance microelectrode arrays. Circulation 128:S3–S13, 2013.CrossRefGoogle Scholar
  35. 35.
    Noorman, M., M. A. van der Heyden, T. A. van Veen, M. G. Cox, R. N. Hauer, J. M. de Bakker, and H. V. van Rijen. Cardiac cell–cell junctions in health and disease: electrical vs mechanical coupling. J. Mol. Cell. Cardiol. 47:23–31, 2009.CrossRefGoogle Scholar
  36. 36.
    Palchesko, R. N., L. Zhang, Y. Sun, and A. W. Feinberg. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PloS ONE 7:e51499, 2012.CrossRefGoogle Scholar
  37. 37.
    Pfeffer, M. A., and E. Braunwald. Ventricular remodeling after myocardial-infarction—experimental-observations and clinical implications. Circulation 81:1161–1172, 1990.CrossRefGoogle Scholar
  38. 38.
    Qin, D., Y. Xia, and G. M. Whitesides. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5:491–502, 2010.CrossRefGoogle Scholar
  39. 39.
    Rampe, D., and A. M. Brown. A history of the role of the herg channel in cardiac risk assessment. J. Pharmacol. Toxicol. Methods 68:13–22, 2013.CrossRefGoogle Scholar
  40. 40.
    Redfern, W. S., L. Carlsson, A. S. Davis, W. G. Lynch, I. MacKenzie, S. Palethorpe, P. K. Siegl, I. Strang, A. T. Sullivan, R. Wallis, A. J. Camm, and T. G. Hammond. Relationships between preclinical cardiac electrophysiology, clinical qt interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58:32–45, 2003.CrossRefGoogle Scholar
  41. 41.
    Salameh, A., A. Wustmann, S. Karl, K. Blanke, D. Apel, D. Rojas-Gomez, H. Franke, F. W. Mohr, J. Janousek, and S. Dhein. Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circ. Res. 106:1592–1602, 2010.CrossRefGoogle Scholar
  42. 42.
    Shimizu, I., and T. Minamino. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 97:245–262, 2016.CrossRefGoogle Scholar
  43. 43.
    Smith, J. H., C. R. Green, N. S. Peters, S. Rothery, and N. J. Severs. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am. J. Pathol. 139:801–821, 1991.Google Scholar
  44. 44.
    Spach, M. S., J. F. Heidlage, R. C. Barr, and P. C. Dolber. Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1:500–515, 2004.CrossRefGoogle Scholar
  45. 45.
    Spencer, C. I., S. Baba, K. Nakamura, E. A. Hua, M. A. Sears, C. C. Fu, J. Zhang, S. Balijepalli, K. Tomoda, Y. Hayashi, P. Lizarraga, J. Wojciak, M. M. Scheinman, K. Aalto-Setala, J. C. Makielski, C. T. January, K. E. Healy, T. J. Kamp, S. Yamanaka, and B. R. Conklin. Calcium transients closely reflect prolonged action potentials in ipsc models of inherited cardiac arrhythmia. Stem Cell Rep. 3:269–281, 2014.CrossRefGoogle Scholar
  46. 46.
    Suh, G. C., A. Bettadapur, J. W. Santoso, and M. L. McCain. Fabrication of micromolded gelatin hydrogels for long-term culture of aligned skeletal myotubes. Methods Mol. Biol. 1668:147–163, 2017.CrossRefGoogle Scholar
  47. 47.
    Ursell, P. C., P. I. Gardner, A. Albala, J. J. Fenoglio, Jr, and A. L. Wit. Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ. Res. 56:436–451, 1985.CrossRefGoogle Scholar
  48. 48.
    Zhuang, J., K. A. Yamada, J. E. Saffitz, and A. G. Kleber. Pulsatile stretch remodels cell-to-cell communication in cultured myocytes. Circ. Res. 87:316–322, 2000.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Laboratory for Living Systems Engineering, USC Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations