Cellular and Molecular Bioengineering

, Volume 11, Issue 2, pp 131–142 | Cite as

Nuclear Lamin Protein C Is Linked to Lineage-Specific, Whole-Cell Mechanical Properties

  • Rafael D. González-Cruz
  • Jessica S. Sadick
  • Vera C. Fonseca
  • Eric M. DarlingEmail author



Lamin proteins confer nuclear integrity and relay external mechanical cues that drive changes in gene expression. However, the influence these lamins have on whole-cell mechanical properties is unknown. We hypothesized that protein expression of lamins A, B1, and C would depend on the integrity of the actin cytoskeleton and correlate with cellular elasticity and viscoelasticity.


To test these hypotheses, we examined the protein expression of lamins A, B1, and C across five different cell lines with varied mechanical properties. Additionally, we treated representative “soft/stiff” cell types with cytochalasin D and LMNA siRNA to determine the effect of a more compliant whole-cell phenotype on lamin A, B1 and C protein expression.


A positive, linear correlation existed between lamin C protein expression and average cell moduli/apparent viscosity. Though moderate correlations existed between lamin A/B1 protein expression and whole-cell mechanical properties, they were statistically insignificant. Inhibition of actin polymerization, via cytochalasin D treatment, resulted in reduced cell elasticity, viscoelasticity, and lamin A and C protein expression in “stiff” MG-63 cells. In “soft” HEK-293T cells, this treatment reduced cell elasticity and viscoelasticity but did not affect lamin B1 or C protein expression. Additionally, LMNA siRNA treatment of MG-63 cells decreased whole-cell elasticity and viscoelasticity.


These findings suggest that lamin C protein expression is strongly associated with whole-cell mechanical properties and could potentially serve as a biomarker for mechanophenotype.


Mechanophenotype Elasticity Viscoelasticity Atomic force microscopy Cytoskeleton Mechanical biomarkers 



We would like to thank Dr. Jeffrey Morgan for his gift of NHF cells. We would also like to acknowledge the Brown Genomics Core Facility and Dr. Christoph Schorl for assistance with fluorescence-based western blot detection. This work by supported by NIH Grants R01 AR063642 and P20 GM104937 (EMD) and R25 GM083270 (RDGC) and NSF CAREER Award CBET 1253189 (EMD).


This work by supported by NIH Grants R01 AR063642 and P20 GM104937 (EMD) and R25 GM083270 (RDGC) and NSF CAREER Award CBET 1253189 (EMD).

Conflict of interest

Authors RDGC, JSS, VCF, and EMD have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author Contributions

R.D.G.C. and E.M.D. designed all experiments. R.D.G.C. conducted all AFM experiments. R.D.G.C. and V.C.F. conducted all western blot experiments. J.S.S. conduced all qPCR experiments. R.D.G.C. and E.M.D. analyzed the data and wrote the manuscript.

Supplementary material

12195_2018_518_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2361 kb)


  1. 1.
    Akter, R., D. Rivas, G. Geneau, H. Drissi, and G. Duque. Effect of lamin A/C knockdown on osteoblast differentiation and function. J. Bone Miner. Res. 24(2):283–293, 2009.CrossRefGoogle Scholar
  2. 2.
    Alam, S. G., Q. Zhang, N. Prasad, Y. Li, S. Chamala, R. Kuchibhotla, B. Kc, V. Aggarwal, S. Shrestha, A. L. Jones, S. E. Levy, K. J. Roux, J. A. Nickerson, and T. P. Lele. The mammalian linc complex regulates genome transcriptional responses to substrate rigidity. Sci. Rep. 6:38063, 2016.CrossRefGoogle Scholar
  3. 3.
    Bera, M., S. R. Ainavarapu, and K. Sengupta. Significance of 1b and 2b domains in modulating elastic properties of lamin A. Sci. Rep. 6:27879, 2016.CrossRefGoogle Scholar
  4. 4.
    Bermeo, S., C. Vidal, H. Zhou, and G. Duque. Lamin a/c acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the wnt/beta-catenin pathway. J. Cell Biochem. 116(10):2344–2353, 2015.CrossRefGoogle Scholar
  5. 5.
    Bordeleau, F., J. P. Califano, Y. L. Negron Abril, B. N. Mason, D. J. LaValley, S. J. Shin, R. S. Weiss, and C. A. Reinhart-King. Tissue stiffness regulates serine/arginine-rich protein-mediated splicing of the extra domain B-fibronectin isoform in tumors. Proc. Natl. Acad. Sci. USA 112(27):8314–8319, 2015.CrossRefGoogle Scholar
  6. 6.
    Buxboim, A., J. Swift, J. Irianto, K. R. Spinler, P. C. Dingal, A. Athirasala, Y. R. Kao, S. Cho, T. Harada, J. W. Shin, and D. E. Discher. Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24(16):1909–1917, 2014.CrossRefGoogle Scholar
  7. 7.
    Constantinescu, D., H. L. Gray, P. J. Sammak, G. P. Schatten, and A. B. Csoka. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24(1):177–185, 2006.CrossRefGoogle Scholar
  8. 8.
    Cross, S. E., Y. S. Jin, J. Rao, and J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2(12):780–783, 2007.CrossRefGoogle Scholar
  9. 9.
    Dahl, K. N., A. J. Ribeiro, and J. Lammerding. Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102(11):1307–1318, 2008.CrossRefGoogle Scholar
  10. 10.
    Darling, E. M., M. Topel, S. Zauscher, T. P. Vail, and F. Guilak. Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J. Biomech. 41(2):454–464, 2008.CrossRefGoogle Scholar
  11. 11.
    Darling, E. M., S. Zauscher, and F. Guilak. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy. Osteoarthr. Cartil. 14(6):571–579, 2006.CrossRefGoogle Scholar
  12. 12.
    Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5):2798–2810, 2002.CrossRefGoogle Scholar
  13. 13.
    Fisher, D. Z., N. Chaudhary, and G. Blobel. Cdna sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA 83(17):6450–6454, 1986.CrossRefGoogle Scholar
  14. 14.
    Fong, L. G., J. K. Ng, J. Lammerding, T. A. Vickers, M. Meta, N. Cote, B. Gavino, X. Qiao, S. Y. Chang, S. R. Young, S. H. Yang, C. L. Stewart, R. T. Lee, C. F. Bennett, M. O. Bergo, and S. G. Young. Prelamin A and lamin A appear to be dispensable in the nuclear lamin A. J. Clin. Invest. 116(3):743–752, 2006.CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Cruz, R. D., V. C. Fonseca, and E. M. Darling. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 109(24):E1523–E1529, 2012.CrossRefGoogle Scholar
  16. 16.
    Hale, C. M., A. L. Shrestha, S. B. Khatau, P. J. Stewart-Hutchinson, L. Hernandez, C. L. Stewart, D. Hodzic, and D. Wirtz. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95(11):5462–5475, 2008.CrossRefGoogle Scholar
  17. 17.
    Harada, T., J. Swift, J. Irianto, J. W. Shin, K. R. Spinler, A. Athirasala, R. Diegmiller, P. C. Dingal, I. L. Ivanovska, and D. E. Discher. Nuclear lamin stiffness is a barrier to 3d migration, but softness can limit survival. J. Cell Biol. 204(5):669–682, 2014.CrossRefGoogle Scholar
  18. 18.
    Ho, C. Y., and J. Lammerding. Lamins at a glance. J. Cell Sci. 125(Pt 9):2087–2093, 2012.CrossRefGoogle Scholar
  19. 19.
    Ihalainen, T. O., L. Aires, F. A. Herzog, R. Schwartlander, J. Moeller, and V. Vogel. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14(12):1252–1261, 2015.CrossRefGoogle Scholar
  20. 20.
    Irianto, J., C. R. Pfeifer, I. L. Ivanovska, J. Swift, and D. E. Discher. Nuclear lamins in cancer. Cell Mol. Bioeng. 9(2):258–267, 2016.CrossRefGoogle Scholar
  21. 21.
    Janes, K. A. An analysis of critical factors for quantitative immunoblotting. Sci. Signal. 8(371):rs2, 2015.CrossRefGoogle Scholar
  22. 22.
    Ji, J. Y., R. T. Lee, L. Vergnes, L. G. Fong, C. L. Stewart, K. Reue, S. G. Young, Q. Zhang, C. M. Shanahan, and J. Lammerding. Cell nuclei spin in the absence of lamin B1. J. Biol. Chem. 282(27):20015–20026, 2007.CrossRefGoogle Scholar
  23. 23.
    Jung, H. J., C. Coffinier, Y. Choe, A. P. Beigneux, B. S. Davies, S. H. Yang, R. H. Barnes, 2nd, J. Hong, T. Sun, S. J. Pleasure, S. G. Young, and L. G. Fong. Regulation of prelamin a but not lamin C by mir-9, a brain-specific microrna. Proc. Natl. Acad. Sci. USA 109(7):E423–E431, 2012.CrossRefGoogle Scholar
  24. 24.
    Kolb, T., J. Kraxner, K. Skodzek, M. Haug, D. Crawford, K. K. Maass, K. E. Aifantis, and G. Whyte. Optomechanical measurement of the role of lamins in whole cell deformability. J. Biophotonics 10(12):1657–1664, 2017.CrossRefGoogle Scholar
  25. 25.
    Labriola, N. R., and E. M. Darling. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation. J. Biomech. 48(6):1058–1066, 2015.CrossRefGoogle Scholar
  26. 26.
    Lammerding, J., L. G. Fong, J. Y. Ji, K. Reue, C. L. Stewart, S. G. Young, and R. T. Lee. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281(35):25768–25780, 2006.CrossRefGoogle Scholar
  27. 27.
    Lammerding, J., and R. T. Lee. The nuclear membrane and mechanotransduction: Impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp. 264:264–273, 2005; ((discussion 273–278)).Google Scholar
  28. 28.
    Lanzicher, T., V. Martinelli, L. Puzzi, G. Del Favero, B. Codan, C. S. Long, L. Mestroni, M. R. Taylor, and O. Sbaizero. The cardiomyopathy lamin A/C d192 g mutation disrupts whole-cell biomechanics in cardiomyocytes as measured by atomic force microscopy loading-unloading curve analysis. Sci. Rep. 5:13388, 2015.CrossRefGoogle Scholar
  29. 29.
    Lee, J. S., C. M. Hale, P. Panorchan, S. B. Khatau, J. P. George, Y. Tseng, C. L. Stewart, D. Hodzic, and D. Wirtz. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. Biophys. J. 93(7):2542–2552, 2007.CrossRefGoogle Scholar
  30. 30.
    Lee, J. M., C. Nobumori, Y. Tu, C. Choi, S. H. Yang, H. J. Jung, T. A. Vickers, F. Rigo, C. F. Bennett, S. G. Young, and L. G. Fong. Modulation of Lmna splicing as a strategy to treat prelamin A diseases. J. Clin. Invest. 126(4):1592–1602, 2016.CrossRefGoogle Scholar
  31. 31.
    Lin, F., and H. J. Worman. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268(22):16321–16326, 1993.Google Scholar
  32. 32.
    Makhija, E., D. S. Jokhun, and G. V. Shivashankar. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. Proc. Natl. Acad. Sci. USA 113(1):E32–E40, 2016.CrossRefGoogle Scholar
  33. 33.
    Mellad, J. A., D. T. Warren, and C. M. Shanahan. Nesprins linc the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23(1):47–54, 2011.CrossRefGoogle Scholar
  34. 34.
    Neelam, S., T. J. Chancellor, Y. Li, J. A. Nickerson, K. J. Roux, R. B. Dickinson, and T. P. Lele. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell. Proc. Natl. Acad. Sci. USA 112(18):5720–5725, 2015.CrossRefGoogle Scholar
  35. 35.
    Ngoka, L. C. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci. 6:30, 2008.CrossRefGoogle Scholar
  36. 36.
    Ostlund, C., G. Bonne, K. Schwartz, and H. J. Worman. Properties of lamin a mutants found in emery-dreifuss muscular dystrophy, cardiomyopathy and dunnigan-type partial lipodystrophy. J. Cell Sci. 114(Pt 24):4435–4445, 2001.Google Scholar
  37. 37.
    Pan, W., E. Petersen, N. Cai, G. Ma, J. Run Lee, Z. Feng, K. Liao, and K. Leong. Viscoelastic properties of human mesenchymal stem cells. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5:4854–4857, 2005.Google Scholar
  38. 38.
    Peter, M., G. T. Kitten, C. F. Lehner, K. Vorburger, S. M. Bailer, G. Maridor, and E. A. Nigg. Cloning and sequencing of cdna clones encoding chicken lamins A and B1 and comparison of the primary structures of vertebrate A- and B-type lamins. J. Mol. Biol. 208(3):393–404, 1989.CrossRefGoogle Scholar
  39. 39.
    Rotsch, C., and M. Radmacher. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78(1):520–535, 2000.CrossRefGoogle Scholar
  40. 40.
    Scaffidi, P., and T. Misteli. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat. Cell Biol. 10(4):452–459, 2008.CrossRefGoogle Scholar
  41. 41.
    Shin, J. W., K. R. Spinler, J. Swift, J. A. Chasis, N. Mohandas, and D. E. Discher. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc. Natl. Acad. Sci. USA 110(47):18892–18897, 2013.CrossRefGoogle Scholar
  42. 42.
    Stewart-Hutchinson, P. J., C. M. Hale, D. Wirtz, and D. Hodzic. Structural requirements for the assembly of linc complexes and their function in cellular mechanical stiffness. Exp. Cell Res. 314(8):1892–1905, 2008.CrossRefGoogle Scholar
  43. 43.
    Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3(4):413–438, 2007.CrossRefGoogle Scholar
  44. 44.
    Swift, J., and D. E. Discher. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127(Pt 14):3005–3015, 2014.CrossRefGoogle Scholar
  45. 45.
    Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104, 2013.CrossRefGoogle Scholar
  46. 46.
    Titushkin, I., and M. Cho. Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys. J. 93(10):3693–3702, 2007.CrossRefGoogle Scholar
  47. 47.
    Vergnes, L., M. Peterfy, M. O. Bergo, S. G. Young, and K. Reue. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. USA 101(28):10428–10433, 2004.CrossRefGoogle Scholar
  48. 48.
    Vorburger, K., G. T. Kitten, and E. A. Nigg. Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal cxxm motif. EMBO J. 8(13):4007–4013, 1989.Google Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Center for Biomedical EngineeringBrown UniversityProvidenceUSA
  2. 2.Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceUSA
  3. 3.Department of OrthopaedicsBrown UniversityProvidenceUSA
  4. 4.School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations