Cellular and Molecular Bioengineering

, Volume 11, Issue 2, pp 117–130 | Cite as

Endothelial Cells Exposed to Fluid Shear Stress Support Diffusion Based Maturation of Adult Neural Progenitor Cells

  • C. M. Dumont
  • J. Piselli
  • S. Temple
  • G. Dai
  • D. M. ThompsonEmail author



The neural stem cell (NSC) niche is a highly complex cellular and biochemical milieu supporting proliferating NSCs and neural progenitor cells (NPCs) with close apposition to the vasculature, primarily comprised of endothelial cells (ECs). Current in vitro models of the niche incorporate EC-derived factors, but do not reflect the physiologically relevant hemodynamic state of the ECs or the spatial resolution observed between cells within the niche.


In this work, we developed a novel in vitro model of the niche that (1) incorporates ECs cultured with fluid shear stress and (2) fosters paracrine cytokine gradients between ECs and NSCs in a spatiotemporal configuration mimicking the cytoarchitecture of the subventricular niche. A modified cone and plate viscometer was used to generate a shear stress of 10 dynes cm−2 for ECs cultured on a membrane, while statically cultured NPCs are 10 or 1000 μm below the ECs.


NPCs cultured within 10 μm of dynamic ECs exhibit increased PSA-NCAM+ and OLIG2+ cells compared to progenitors in all other culture regimes and the hemodynamic EC phenotype results in distinct progeny phenotypes. This co-culture regime yields greater release of pro-neurogenic factors, suggesting a potential mechanism for the observed progenitor maturation.


Based on these results, models incorporating ECs exposed to shear stress allow for paracrine signaling gradients and regulate NPC lineage progression with appropriate niche spatial resolution occurring at 10 μm. This model could be used to evaluate cellular or pharmacological interactions within the healthy, diseased, or aged brain.


Neural stem cells Vascular niche Shear stress Neurogenesis Endothelial cells 



The authors acknowledge both the Stem Cell Biology and Microscopy Research Cores within the Center for Biotechnology and Interdisciplinary Studies at Rensselaer Polytechnic Institute. Funding was provided by the National Institutes of Health (RO1AG041861-ST), the National Science Foundation (CBET-1350240 - GD), and the New York State Department of Health NYSTEM (C026419 - DMT).

Conflict of interest

Courtney Dumont, Jennifer Piselli, Sally Temple, Guohao Dai, and Deanna Thompson declare that they have no conflicts of interest.

Ethical Approval

No human studies were carried out by the authors for this article. All animal studies were carried out in accordance with the Institutional Animal Care and Use Committee guidelines at Rensselaer Polytechnic Institute.

Supplementary material

12195_2017_516_MOESM1_ESM.docx (640 kb)
Supplementary material 1 (DOCX 640 kb)
12195_2017_516_MOESM2_ESM.avi (9 mb)
Supplementary material 2 (AVI 9220 kb)
12195_2017_516_MOESM3_ESM.avi (17.3 mb)
Supplementary material 3 (AVI 17668 kb)


  1. 1.
    Ahn, S. M., K. Byun, D. Kim, K. Lee, J. S. Yoo, S. U. Kim, et al. Olig2-induced neural stem cell differentiation involves downregulation of Wnt signaling and induction of Dickkopf-1 expression. PLoS ONE. 3:e3917, 2008.CrossRefGoogle Scholar
  2. 2.
    Ando, J., and K. Yamamoto. Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ. J. 73:1983–1992, 2009.CrossRefGoogle Scholar
  3. 3.
    Arisaka, T., M. Mitsumata, M. Kawasumi, T. Tohjima, S. Hirose, and Y. Yoshida. Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann. N Y Acad. Sci. 748:543–554, 1995.CrossRefGoogle Scholar
  4. 4.
    Aviezer, D., E. Levy, M. Safran, C. Svahn, E. Buddecke, A. Schmidt, et al. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J. Biol. Chem. 269:114–121, 1994.Google Scholar
  5. 5.
    Bandtlow, C. E., and D. R. Zimmermann. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 80:1267–1290, 2000.CrossRefGoogle Scholar
  6. 6.
    Barakat, A., and D. Lieu. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem. Biophys. 38:323–343, 2003.CrossRefGoogle Scholar
  7. 7.
    Capela, A., and S. Temple. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron. 35:865–875, 2002.CrossRefGoogle Scholar
  8. 8.
    Chang, Z., K. Meyer, A. C. Rapraeger, and A. Friedl. Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J. 14:137–144, 2000.CrossRefGoogle Scholar
  9. 9.
    Chiu, J. J., L. J. Chen, C. N. Chen, P. L. Lee, and C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37:531–539, 2004.CrossRefGoogle Scholar
  10. 10.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.CrossRefGoogle Scholar
  11. 11.
    Delgado, A. C., S. R. Ferron, D. Vicente, E. Porlan, A. Perez-Villalba, C. M. Trujillo, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron. 83:572–585, 2014.CrossRefGoogle Scholar
  12. 12.
    Ding, B. S., D. J. Nolan, J. M. Butler, D. James, A. O. Babazadeh, Z. Rosenwaks, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 468:310–315, 2010.CrossRefGoogle Scholar
  13. 13.
    Doetsch, F. A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13:543–550, 2003.CrossRefGoogle Scholar
  14. 14.
    Donnelly, D. J., and P. G. Popovich. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209:378–388, 2008.CrossRefGoogle Scholar
  15. 15.
    Douet, V., A. Kerever, E. Arikawa-Hirasawa, and F. Mercier. Fractone-heparan sulphates mediate FGF-2 stimulation of cell proliferation in the adult subventricular zone. Cell Prolif. 46:137–145, 2013.CrossRefGoogle Scholar
  16. 16.
    Dumont, C. M., J. M. Piselli, N. Kazi, E. Bowman, G. Li, R. J. Linhardt, et al. Factors released from endothelial cells exposed to flow impact adhesion, proliferation, and fate choice in the adult neural stem cell lineage. Stem Cells Dev. 26:1–15, 2017.CrossRefGoogle Scholar
  17. 17.
    Falk, A., and J. Frisen. Amphiregulin is a mitogen for adult neural stem cells. J. Neurosci. Res. 69:757–762, 2002.CrossRefGoogle Scholar
  18. 18.
    Fernandez-Martos, C. M., C. Gonzalez-Fernandez, P. Gonzalez, A. Maqueda, E. Arenas, and F. J. Rodriguez. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS ONE. 6:e27000, 2011.CrossRefGoogle Scholar
  19. 19.
    Gama Sosa, M. A., R. De Gasperi, A. B. Rocher, G. M. Perez, K. Simons, D. E. Cruz, et al. Interactions of primary neuroepithelial progenitor and brain endothelial cells: distinct effect on neural progenitor maintenance and differentiation by soluble factors and direct contact. Cell Res. 17:619–626, 2007.CrossRefGoogle Scholar
  20. 20.
    Gomez-Nicola, D., B. Valle-Argos, N. Pallas-Bazarra, and M. Nieto-Sampedro. Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol. Biol. Cell. 22:1960–1970, 2011.CrossRefGoogle Scholar
  21. 21.
    Gomez-Nicola, D., B. Valle-Argos, M. Suardiaz, J. S. Taylor, and M. Nieto-Sampedro. Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: regulation of macrophage and T-cell infiltration. J. Neurochem. 107:1741–1752, 2008.CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Perez, O., F. Gutierrez-Fernandez, V. Lopez-Virgen, J. Collas-Aguilar, A. Quinones-Hinojosa, and J. M. Garcia-Verdugo. Immunological regulation of neurogenic niches in the adult brain. Neuroscience. 226:270–281, 2012.CrossRefGoogle Scholar
  23. 23.
    Gordon, R. J., N. F. Mehrabi, C. Maucksch, and B. Connor. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone. Exp. Neurol. 233:587–594, 2012.CrossRefGoogle Scholar
  24. 24.
    Gritli-Linde, A., P. Lewis, A. P. McMahon, and A. Linde. The whereabouts of a morphogen: direct evidence for short- and graded long-range activity of hedgehog signaling peptides. Dev. Biol. 236:364–386, 2001.CrossRefGoogle Scholar
  25. 25.
    Gruber, R. C., A. K. Ray, C. T. Johndrow, H. Guzik, D. Burek, P. G. de Frutos, et al. Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis. J. Neurosci. 34:16320–16335, 2014.CrossRefGoogle Scholar
  26. 26.
    Hagihara, K., K. Watanabe, J. Chun, and Y. Yamaguchi. Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells. Dev. Dyn. 219:353–367, 2000.CrossRefGoogle Scholar
  27. 27.
    Han, J., F. Zhang, J. Xie, R. J. Linhardt, and L. M. Hiebert. Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin. Cardiovasc. Diabetol. 8:46, 2009.CrossRefGoogle Scholar
  28. 28.
    Hastings, N. E., M. B. Simmers, O. G. McDonald, B. R. Wamhoff, and B. R. Blackman. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell. Physiol. 293:C1824–C1833, 2007.CrossRefGoogle Scholar
  29. 29.
    Heydarkhan-Hagvall, S., S. Chien, S. Nelander, Y. C. Li, S. Yuan, J. Lao, et al. DNA microarray study on gene expression profiles in co-cultured endothelial and smooth muscle cells in response to 4- and 24-h shear stress. Mol. Cell. Biochem. 281:1–15, 2006.CrossRefGoogle Scholar
  30. 30.
    Hui, E. E., and S. N. Bhatia. Micromechanical control of cell-cell interactions. Proc. Natl. Acad. Sci. USA. 104:5722–5726, 2007.CrossRefGoogle Scholar
  31. 31.
    Ida, M., T. Shuo, K. Hirano, Y. Tokita, K. Nakanishi, F. Matsui, et al. Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J. Biol. Chem. 281:5982–5991, 2006.CrossRefGoogle Scholar
  32. 32.
    Kato, T., H. Sasaki, T. Katagiri, H. Sasaki, K. Koiwai, H. Youki, et al. The binding of basic fibroblast growth factor to Alzheimer’s neurofibrillary tangles and senile plaques. Neurosci. Lett. 122:33–36, 1991.CrossRefGoogle Scholar
  33. 33.
    Kerever, A., J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, et al. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells. 25:2146–2157, 2007.CrossRefGoogle Scholar
  34. 34.
    Knerlich-Lukoschus, F., B. von der Ropp-Brenner, R. Lucius, H. M. Mehdorn, and J. Held-Feindt. Spatiotemporal CCR1, CCL3(MIP-1alpha), CXCR4, CXCL12(SDF-1alpha) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J. Neurosurg. Spine. 14:583–597, 2011.CrossRefGoogle Scholar
  35. 35.
    Kokovay, E., S. Goderie, Y. Wang, S. Lotz, G. Lin, Y. Sun, et al. Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell. 7:163–173, 2010.CrossRefGoogle Scholar
  36. 36.
    Kuzumaki, N., D. Ikegami, S. Imai, M. Narita, R. Tamura, M. Yajima, et al. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse. 64:721–728, 2010.CrossRefGoogle Scholar
  37. 37.
    LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol. Heart Circ. Physiol. 293:H2853–H2859, 2007.CrossRefGoogle Scholar
  38. 38.
    Lapidot, T., A. Dar, and O. Kollet. How do stem cells find their way home? Blood. 106:1901–1910, 2005.CrossRefGoogle Scholar
  39. 39.
    Lehtinen, M. K., M. W. Zappaterra, X. Chen, Y. J. Yang, A. D. Hill, M. Lun, et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 69:893–905, 2011.CrossRefGoogle Scholar
  40. 40.
    Li, Q., M. C. Ford, E. B. Lavik, and J. A. Madri. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J. Neurosci. Res. 84:1656–1668, 2006.CrossRefGoogle Scholar
  41. 41.
    Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation. 12:5–15, 2005.CrossRefGoogle Scholar
  42. 42.
    Lowry, N., S. K. Goderie, M. Adamo, P. Lederman, C. Charniga, J. Gill, et al. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Exp. Neurol. 209:510–522, 2008.CrossRefGoogle Scholar
  43. 43.
    Morita, T., M. Yoshizumi, H. Kurihara, K. Maemura, R. Nagai, and Y. Yazaki. Shear stress increases heparin-binding epidermal growth factor-like growth factor mRNA levels in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 197:256–262, 1993.CrossRefGoogle Scholar
  44. 44.
    Nikolova, G., B. Strilic, and E. Lammert. The vascular niche and its basement membrane. Trends Cell Biol. 17:19–25, 2007.CrossRefGoogle Scholar
  45. 45.
    Nugent, M. A., and E. R. Edelman. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry. 31:8876–8883, 1992.CrossRefGoogle Scholar
  46. 46.
    Ottone, C., B. Krusche, A. Whitby, M. Clements, G. Quadrato, M. E. Pitulescu, et al. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 16:1045–1056, 2014.CrossRefGoogle Scholar
  47. 47.
    Ousman, S. S., and S. David. MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J. Neurosci. 21:4649–4656, 2001.Google Scholar
  48. 48.
    Palma, V., D. A. Lim, N. Dahmane, P. Sanchez, T. C. Brionne, C. D. Herzberg, et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development. 132:335–344, 2005.CrossRefGoogle Scholar
  49. 49.
    Passerini, A. G., A. Milsted, and S. E. Rittgers. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J. Vasc. Surg. 37:182–190, 2003.CrossRefGoogle Scholar
  50. 50.
    Pastrana, E., L. C. Cheng, and F. Doetsch. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl. Acad. Sci. USA. 106:6387–6392, 2009.CrossRefGoogle Scholar
  51. 51.
    Puglianiello, A., D. Germani, P. Rossi, and S. Cianfarani. IGF-I stimulates chemotaxis of human neuroblasts. Involvement of type 1 IGF receptor, IGF binding proteins, phosphatidylinositol-3 kinase pathway and plasmin system. J. Endocrinol. 165:123–131, 2000.CrossRefGoogle Scholar
  52. 52.
    Reisig, K., and A. M. Clyne. Fibroblast growth factor-2 binding to the endothelial basement membrane peaks at a physiologically relevant shear stress. Matrix Biol. 29:586–593, 2010.CrossRefGoogle Scholar
  53. 53.
    Reneman, R. S., and A. P. Hoeks. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med. Biol. Eng. Comput. 46:499–507, 2008.CrossRefGoogle Scholar
  54. 54.
    Saksela, O., D. Moscatelli, A. Sommer, and D. B. Rifkin. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107:743–751, 1988.CrossRefGoogle Scholar
  55. 55.
    Santaguida, S., D. Janigro, M. Hossain, E. Oby, E. Rapp, and L. Cucullo. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res. 1109:1–13, 2006.CrossRefGoogle Scholar
  56. 56.
    Shen, Q., S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 304:1338–1340, 2004.CrossRefGoogle Scholar
  57. 57.
    Shen, Q., Y. Wang, E. Kokovay, G. Lin, S. M. Chuang, S. K. Goderie, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell. 3:289–300, 2008.CrossRefGoogle Scholar
  58. 58.
    Shi, B., J. Ding, Y. Liu, X. Zhuang, X. Zhuang, X. Chen, et al. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PLoS ONE. 9:e106038, 2014.CrossRefGoogle Scholar
  59. 59.
    Sirko, S., A. von Holst, A. Wizenmann, M. Gotz, and A. Faissner. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development. 134:2727–2738, 2007.CrossRefGoogle Scholar
  60. 60.
    Stepp, D. W., Y. Nishikawa, and W. M. Chilian. Regulation of shear stress in the canine coronary microcirculation. Circulation. 100:1555–1561, 1999.CrossRefGoogle Scholar
  61. 61.
    Sun, L., S. Liu, Q. Sun, Z. Li, F. Xu, C. Hou, et al. Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev. 23:2104–2118, 2014.CrossRefGoogle Scholar
  62. 62.
    Suzuki, Y., M. Yanagisawa, H. Yagi, Y. Nakatani, and R. K. Yu. Involvement of beta1-integrin up-regulation in basic fibroblast growth factor- and epidermal growth factor-induced proliferation of mouse neuroepithelial cells. J. Biol. Chem. 285:18443–18451, 2010.CrossRefGoogle Scholar
  63. 63.
    Tavazoie, M., L. Van der Veken, V. Silva-Vargas, M. Louissaint, L. Colonna, B. Zaidi, et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell. 3:279–288, 2008.CrossRefGoogle Scholar
  64. 64.
    Tham, M., S. Ramasamy, H. T. Gan, A. Ramachandran, A. Poonepalli, Y. H. Yu, et al. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS ONE. 5:e15341, 2010.CrossRefGoogle Scholar
  65. 65.
    Thomas, J. A., R. A. Deaton, N. E. Hastings, Y. Shang, C. W. Moehle, U. Eriksson, et al. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns. Am. J. Physiol. Heart Circ. Physiol. 296:H442–H452, 2009.CrossRefGoogle Scholar
  66. 66.
    Wu, S. M., K. S. Tan, H. Chen, T. T. Beh, H. C. Yeo, S. K. Ng, et al. Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexpression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev. 21:729–741, 2012.CrossRefGoogle Scholar
  67. 67.
    Zhang, J., and Y. De Koninck. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J. Neurochem. 97:772–783, 2006.CrossRefGoogle Scholar
  68. 68.
    Zhang, X., L. Zhang, X. Cheng, Y. Guo, X. Sun, G. Chen, et al. IGF-1 promotes Brn-4 expression and neuronal differentiation of neural stem cells via the PI3 K/Akt pathway. PLoS ONE. 9:e113801, 2014.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • C. M. Dumont
    • 1
    • 2
  • J. Piselli
    • 1
    • 2
  • S. Temple
    • 3
  • G. Dai
    • 1
    • 2
  • D. M. Thompson
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Center for Biotechnology & Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Neural Stem Cell InstituteRensselaerUSA

Personalised recommendations