Skip to main content
Log in

Cell Migration in Microfabricated 3D Collagen Microtracks is Mediated Through the Prometastatic Protein Girdin

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

In vivo, cancer cells can utilize tube-like microtracks formed within the extracellular matrix (ECM) of the stroma as ‘highways’ to escape the primary tumor, however very little is known about the molecular mechanisms that govern cell migration through these microtracks. Cell polarization and actin organization are both essential for efficient cell migration and cells are known to migrate very unidirectionally in confined spaces. In this study, we focused on understanding the role of Girdin during unidirectional migration. Girdin is a prometastatic protein known to be involved in cell polarity by directly interacting with the cell polarity protein Par-3 (Partitioning defective-3) and also known as an actin binding protein.

Methods

We utilized a microfabricated platform to recreate these microtracks in vitro using collagen and used siRNA to knockdown Girdin in MDA-MB-231 cells.

Results

Our data indicate that knockdown of Girdin results in decreased cell speed during 3D collagen microtrack migration. Loss of Girdin also results in altered cell morphology and cell orientation. Moreover, Girdin-depletion impairs actin organization and stress fiber formation, which can be restored by upregulating the GTPase RhoA. Activation of RhoA induces actin stress fiber formation, restores elongated migratory cell shape and partial cell migration in 3D collagen microtracks in the absence of Girdin.

Conclusions

Our data suggest that Girdin helps directional migration in collagen microtracks by promoting actin cytoskeletal organization and maintaining morphological cell polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

siRNA:

Short interfering RNA

Par-3:

Partitioning defective-3

STAT3:

Signal transducer and activator of transcription-3

References

  1. Besson, A., M. Gurian-West, A. Schmidt, A. Hall, and J. M. Roberts. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 18(8):862–876, 2004.

    Article  Google Scholar 

  2. Carey, S. P., A. Rahman, C. M. Kraning-Rush, B. Romero, S. Somasegar, O. M. Torre, R. M. Williams, and C. A. Reinhart-King. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am. J. Physiol -Cell Physiol. 308(6):C436–C444, 2015.

    Article  Google Scholar 

  3. Carey, S. P., C. M. Kraning-Rush, R. M. Williams, and C. A. Reinhart-King. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 33(16):4157–4165, 2012.

    Article  Google Scholar 

  4. Debidda, M., L. Wang, H. Zang, V. Poli, and Y. Zheng. A role of STAT3 in Rho GTPase-regulated cell migration and proliferation. J. Biol. Chem. 280(17):17275–17285, 2005.

    Article  Google Scholar 

  5. Egea, G., C. Serra-Peinado, M. P. Gavilán, and R. M. Ríos. Cytoskeleton and Golgi-apparatus interactions: a two-way road of function and structure. Cell Health Cytoskelet. 7:37–54, 2015.

    Article  Google Scholar 

  6. Enomoto, A., J. Ping, and M. Takahashi. Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. Ann. N. Y. Acad. Sci. 1086(1):169–184, 2006.

    Article  Google Scholar 

  7. Etienne-Manneville, S. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29:471–499, 2013.

    Article  Google Scholar 

  8. Fraley, S. I., Y. Feng, R. Krishnamurthy, D.-H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell Biol. 12(6):598–604, 2010.

    Article  Google Scholar 

  9. Friedl, P., and K. Wolf. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. jcb-200909003, 2009.

  10. Friedl, P., and K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res. 68(18):7247–7249, 2008.

    Article  Google Scholar 

  11. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer. 3(5):362–374, 2003.

    Article  Google Scholar 

  12. Friedl, Peter, Erik Sahai, Stephen Weiss, and Kenneth M. Yamada. New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13(11):743–747, 2012.

    Article  Google Scholar 

  13. Fukata, M., M. Nakagawa, and K. Kaibuchi. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15:590–597, 2003.

    Article  Google Scholar 

  14. Garcia-Marcos, M., P. Ghosh, and M. G. Farquhar. GIV/Girdin transmits signals from multiple receptors by triggering trimeric G protein activation. J. Biol. Chem. 290(11):6697–6704, 2015.

    Article  Google Scholar 

  15. Ghosh, P., M. Garcia-Marcos, S. J. Bornheimer, and M. G. Farquhar. Activation of Gαi3 triggers cell migration via regulation of GIV. J. Cell Biol. 182(2):381–393, 2008.

    Article  Google Scholar 

  16. Giehl, K., C. Keller, S. Muehlich, and M. Goppelt-Struebe. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE 10(3):e0121589, 2015.

    Article  Google Scholar 

  17. Goldstein, B., and I. G. Macara. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell. 13:609–622, 2007.

    Article  Google Scholar 

  18. Gu, F., L. Wang, J. He, X. Liu, H. Zhang, W. Li, L. Fu, and Y. Ma. Girdin an actin-binding protein, is critical for migration, adhesion, and invasion of human glioblastoma cells. J. Neurochem. 131(4):457–469, 2014.

    Article  Google Scholar 

  19. Hehnly, H., W. Xu, J. L. Chen, and M. Stamnes. Cdc42 regulates microtubule-dependent golgi positioning. Traffic. 11(8):1067–1078, 2010.

    Article  Google Scholar 

  20. Huynh, J., F. Bordeleau, C. M. Kraning-Rush, and C. A. Reinhart-King. Substrate stiffness regulates PDGF-induced circular dorsal ruffle formation through MLCK. Cell. Mol. Bioeng. 6(2):138–147, 2013.

    Article  Google Scholar 

  21. Jiang, P., A. Enomoto, M. Jijiwa, T. Kato, T. Hasegawa, M. Ishida, T. Sato, N. Asai, Y. Murakumo, and M. Takahashi. An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Res. 68(5):1310–1318, 2008.

    Article  Google Scholar 

  22. Kenakin, T. Oligomerization and allosteric modulation in G-protein coupled receptors. Cambridge: Academic Press, 2012.

    Google Scholar 

  23. Kraning-Rush, C. M., S. P. Carey, M. C. Lampi, and C. A. Reinhart-King. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D. Integr. Biol. 5(3):606–616, 2013.

    Article  Google Scholar 

  24. Krause, M., and A. Gautreau. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15(9):577–590, 2014.

    Article  Google Scholar 

  25. Leyme, A., A. Marivin, and M. Garcia-Marcos. GIV/Girdin (Gα-interacting, vesicle-associated protein/Girdin) creates a positive feedback loop that potentiates outside-in integrin signaling in cancer cells. J. Biol. Chem. 291(15):8269–8282, 2016.

    Article  Google Scholar 

  26. Leyme, A., A. Marivin, L. Perez-Gutierrez, L. T. Nguyen, and M. Garcia-Marcos. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. J. Cell Biol. jcb-201506041, 2015.

  27. Li, R., and G. G. Gundersen. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev Mol. Cell Biol. 9(11):860–873, 2008.

    Article  Google Scholar 

  28. Liu, C., Y. Zhang, H. Xu, R. Zhang, H. Li, P. Lu, and F. Jin. Girdin protein: a new potential distant metastasis predictor of breast cancer. Med. Oncol. 29(3):1554–1560, 2012.

    Article  Google Scholar 

  29. Lopez-Sanchez, I., N. Kalogriopoulos, I.-C. Lo, F. Kabir, K. K. Midde, H. Wang, and P. Ghosh. Focal adhesions are foci for tyrosinebased signal transduction via GIV/Girdin and G proteins. Mol. Biol. Cell. 26(24):4313–4324, 2015.

    Article  Google Scholar 

  30. Macara, I. G. Parsing the polarity code. Nat. Rev. Mol. Cell Biol. 5:220–231, 2004.

    Article  Google Scholar 

  31. Mak, M., F. Spill, R. D. Kamm, and M. H. Zaman. Single-cell migration in complex microenvironments: mechanics and signaling dynamics. J. Biomech. Eng. 138:1–8, 2015.

    Google Scholar 

  32. Mak, M., M. H. Zaman, R. D. Kamm, and T. Kim. Interplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networks. Nat. Commun. 7 2016.

  33. Meyer, A. S., S. K. Hughes-Alford, J. E. Kay, A. Castillo, A. Wells, F. B. Gertler, and D. A. Lauffenburger. 2D protrusion but not motility predicts growth factor–induced cancer cell migration in 3D collagen. J. Cell Biol. jcb-201201003, 2012.

  34. Millarte, V., and H. Farhan. The Golgi in cell migration: regulation by signal transduction and its implications for cancer cell metastasis. Scientific World J. 2012, 2012.

  35. Ohara, K., A. Enomoto, T. Kato, T. Hashimoto, M. Isotani-Sakakibara, N. Asai, M. Ishida-Takagishi, L. Weng, M. Nakayama, T. Watanabe, and K. Kato. Involvement of Girdin in the determination of cell polarity during cell migration. PLoS ONE. 7(5):e36681, 2012.

    Article  Google Scholar 

  36. Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13:641–648, 2001.

    Article  Google Scholar 

  37. Pan, B., J. Shen, J. Cao, Y. Zhou, L. Shang, S. Jin, S. Cao, D. Che, F. Liu, and Y. Yu. Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci. Rep. 5:16053, 2015.

    Article  Google Scholar 

  38. Pellegrin, S., and H. Mellor. Actin stress fibres. J. Cell Sci. 120(20):3491–3499, 2007.

    Article  Google Scholar 

  39. Pollard, T. D., and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465, 2003.

    Article  Google Scholar 

  40. Qi, M., Y. Liu, M. R. Freeman, and K. R. Solomon. Cholesterol-regulated stress fiber formation. J. Cell. Biochem. 106:1031–1040, 2009.

    Article  Google Scholar 

  41. Rahman, A., S. P. Carey, C. M. Kraning-Rush, Z. E. Goldblatt, F. Bordeleau, M. C. Lampi, D. Y. Lin, A. J. García, and C. A. Reinhart-King. Vinculin regulates directionality and cell polarity in two-and three-dimensional matrix and three-dimensional microtrack migration. Mol. Biol. Cell. 27(9):1431–1441, 2016.

    Article  Google Scholar 

  42. Reffay, M., M.-C. Parrini, O. Cochet-Escartin, B. Ladoux, A. Buguin, S. Coscoy, F. Amblard, J. Camonis, and P. Silberzan. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 3:217, 2014.

    Article  Google Scholar 

  43. Sasaki, K., T. Kakuwa, K. Akimoto, H. Koga, and S. Ohno. Regulation of epithelial cell polarity by PAR-3 depends on Girdin transcription and Girdin–Gαi3 signaling. J. Cell Sci. 128(13):2244–2258, 2015.

    Article  Google Scholar 

  44. Suzuki, A., and S. Ohno. The PAR-aPKC system: lessons in polarity. J. Cell Sci. 119:979–987, 2006.

    Article  Google Scholar 

  45. Teng, T. S., B. Lin, E. Manser, D. C. H. Ng, and X. Cao. Stat3 promotes directional cell migration by regulating Rac1 activity via its activator βPIX. J. Cell Sci. 122(22):4150–4159, 2009.

    Article  Google Scholar 

  46. Tojkander, S., G. Gateva, and P. Lappalainen. Actin stress fibers–assembly, dynamics and biological roles. J. Cell Sci. 125(8):1855–1864, 2012.

    Article  Google Scholar 

  47. Vallenius, T. Actin stress fibre subtypes in mesenchymal-migrating cells. Open Biol. 3(6):130001, 2003.

    Article  Google Scholar 

  48. Vicente-Manzanares, M., D. J. Webb, and A. R. Horwitz. Cell migration at a glance. J. Cell Sci. 118(21):4917–4919, 2005.

    Article  Google Scholar 

  49. Weng, L., A. Enomoto, M. Ishida-Takagishi, N. Asai, and M. Takahashi. Girding for migratory cues: roles of the Akt substrate Girdin in cancer progression and angiogenesis. Cancer Sci. 101(4):836–842, 2010.

    Article  Google Scholar 

  50. Wu, D., D. Yu, X. Wang, and B. Yu. F-actin rearrangement is regulated by mTORC2/Akt/Girdin in mouse fertilized eggs. Cell Prolif. 49(6):740–750, 2016.

    Article  Google Scholar 

  51. Zaman, M. H., L. M. Trapani, A. L. Sieminski, D. MacKellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger, and P. Matsudaira. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. 103(29):10889–10894, 2006.

    Article  Google Scholar 

  52. Zhang, J., W.-H. Guo, and Y.-L. Wang. Microtubules stabilize cell polarity by localizing rear signals. Proc. Natl Acad. Sci. 111(46):16383–16388, 2014.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the use of equipment and resources at the Cornell NanoScale Science and Technology Facility (CNF).

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was supported by the National Science Foundation (NSF)—National Institute of Health Physical and Engineering Sciences in Oncology (PESO) award (Award Number 1233827) and by National Institutes of Health (Award Number HL127499) to Cynthia Reinhart-King. In addition, this was work also supported by National Science Foundation Graduate Fellowship to Aniqua Rahman-Zaman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Reinhart-King.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman-Zaman, A., Shan, S. & Reinhart-King, C.A. Cell Migration in Microfabricated 3D Collagen Microtracks is Mediated Through the Prometastatic Protein Girdin. Cel. Mol. Bioeng. 11, 1–10 (2018). https://doi.org/10.1007/s12195-017-0511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0511-x

Keywords

Navigation