Data-Modeling Identifies Conflicting Signaling Axes Governing Myoblast Proliferation and Differentiation Responses to Diverse Ligand Stimuli
Abstract
Introduction
Skeletal muscle tissue development and regeneration relies on the proliferation, maturation and fusion of muscle progenitor cells (myoblasts), which arise transiently from muscle stem cells (satellite cells). Following muscle damage, myoblasts proliferate and differentiate in response to temporally-varying inflammatory cytokines, growth factors, and extracellular matrix cues, which stimulate a shared network of intracellular signaling pathways. Here we present an integrated data-modeling approach to elucidate synergies and antagonisms among proliferation and differentiation signaling axes in myoblasts stimulated by regeneration-associated ligands.
Methods
We treated mouse primary myoblasts in culture with combinations of eight regeneration-associated growth factors and cytokines in mixtures that induced additive, synergistic, and antagonistic effects on myoblast proliferation and differentiation responses. For these combinatorial stimuli, we measured the activation dynamics of seven signal transduction pathways using multiplexed phosphoprotein assays and scored proliferation and differentiation responses based on expression of myogenic commitment factors to assemble a cue-signaling-response data compendium. We interrogated the relationship between these signals and responses by partial least-squares (PLS) regression modeling.
Results
Partial least-squares data-modeling accurately predicted response outcomes in cross-validation on the training compendium (cumulative R 2 = 0.96). The PLS model highlighted signaling axes that distinctly govern myoblast proliferation (MEK–ERK, Stat3) and differentiation (JNK) in response to these combinatorial cues, and we confirmed these signal-response associations with small molecule perturbations. Unexpectedly, we observed that a negative feedback circuit involving the phosphatase DUSP6/MKP-3 auto-regulates MEK–ERK signaling in myoblasts.
Conclusion
This data-modeling approach identified conflicting signaling axes that underlie muscle progenitor cell proliferation and differentiation.
Keywords
Cue-signal-response modeling Cytokines Growth factors Partial least-squares regression Skeletal muscle Systems biologyAbbreviations
- AUC
Area-under-the-curve
- CSR
Cue-signal-response
- DUSP
Dual specificity phosphatase
- EGF
Epidermal growth factor
- FGF2
Fibroblast growth factor 2
- IGF1
Insulin-like growth factor 1
- IL-1α
Interleukin-1α
- IL-6
Interleukin-6
- LIF
Leukemia inhibitor factor
- MHC
Myosin heavy chain
- OSM
Oncostatin-M
- PC
Principal component
- PLS
Partial-least squares
- TNF-α
Tumor necrosis factor-α
Notes
Acknowledgments
This work was financially supported by the National Institute on Aging of the National Institutes of Health under Award R00AG042491 (to B.D.C), a US Department of Education Graduate Assistantship in Areas of National Need under Award P200A150273 (to A.M.L), a Roberta G. and John B. DeVries Graduate Fellowship (to A.M.L.), and Hunter R. Rawlings III Cornell Presidential Research Scholarship (to R.F.K. and J.K.). This work made use of the Nanobiotechnology Center (NBTC) shared research facilities at Cornell University. The authors acknowledge technical assistance from Teresa Porri, Penny Burke, Andrea De Micheli, Hilarie Sit, Muhammad Safwan Jalal, Nancy Mejia, Isabella Mercado, Ryan Ausmus, and Paula Fraczek. The authors thank the anonymous reviewers for their constructive reviews.
Animal Studies
All institutional and national guidelines for the care and use of laboratory animals were followed in a protocol approved by Cornell University’s Institutional Animal Care and Use Committee (IACUC).
Conflicts of interest
A. M. Loiben, S. Soueld-Baumgarten, D. Bhattacharya, R. F. Kopyto, J. C. Kim and B. D. Cosgrove declare that they have no conflicts of interest.
Human Studies
No human studies were carried out by the authors for this article.
Supplementary material
References
- 1.Albeck, J. G., G. MacBeath, F. M. White, P. K. Sorger, D. A. Lauffenburger, and S. Gaudet. Collecting and organizing systematic sets of protein data. Nat. Rev. Mol. Cell Biol. 7(11):803–812, 2006.CrossRefGoogle Scholar
- 2.Belizario, J. E., C. C. Fontes-Oliveira, J. P. Borges, J. A. Kashiabara, and E. Vannier. Skeletal muscle wasting and renewal: a pivotal role of myokine il-6. Springerplus 5:619, 2016.CrossRefGoogle Scholar
- 3.Bennett, A. M., and N. K. Tonks. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278(5341):1288–1291, 1997.CrossRefGoogle Scholar
- 4.Bernet, J. D., J. D. Doles, J. K. Hall, K. Kelly Tanaka, T. A. Carter, and B. B. Olwin. P38 mapk signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20(3):265–271, 2014.CrossRefGoogle Scholar
- 5.Bliss, C. I. The toxicity of poisins applied jointly. Ann. Appl. Biol. 26(3):585–615, 1939.CrossRefGoogle Scholar
- 6.Broholm, C., M. J. Laye, C. Brandt, R. Vadalasetty, H. Pilegaard, B. K. Pedersen, and C. Scheele. LIF is a contraction-induced myokine stimulating human myocyte proliferation. J. Appl. Physiol. (1985) 111(1):251–259, 2011.CrossRefGoogle Scholar
- 7.Cheung, T. H., and T. A. Rando. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14(6):329–340, 2013.CrossRefGoogle Scholar
- 8.Cosgrove, B. D., L. G. Alexopoulos, T. C. Hang, B. S. Hendriks, P. K. Sorger, L. G. Griffith, and D. A. Lauffenburger. Cytokine-associated drug toxicity in human hepatocytes is associated with signaling network dysregulation. Mol. BioSyst. 6(7):1195–1206, 2010.CrossRefGoogle Scholar
- 9.Cosgrove, B. D., L. G. Alexopoulos, J. Saez-Rodriguez, L. G. Griffith, and D. A. Lauffenburger. A multipathway phosphoproteomic signaling network model of idiosyncratic drug- and inflammatory cytokine-induced toxicity in human hepatocytes. In: Conf Proc IEEE EMBS, 2009, pp. 5452–5455.Google Scholar
- 10.Cosgrove, B. D., P. M. Gilbert, E. Porpiglia, F. Mourkioti, S. P. Lee, S. Y. Corbel, M. E. Llewellyn, S. L. Delp, and H. M. Blau. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20(3):255–264, 2014.CrossRefGoogle Scholar
- 11.Cosgrove, B. D., L. G. Griffith, and D. A. Lauffenburger. Fusing tissue engineering and systems biology toward fulfilling their promise. Cell. Mol. Bioeng. 1(1):33–41, 2008.CrossRefGoogle Scholar
- 12.Davies, S. P., H. Reddy, M. Caivano, and P. Cohen. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351(Pt 1):95–105, 2000.CrossRefGoogle Scholar
- 13.Deshpande, R. S., and A. A. Spector. Modeling stem cell myogenic differentiation. Sci. Rep. 7:40639, 2017.CrossRefGoogle Scholar
- 14.Dumont, N. A., C. F. Bentzinger, M. C. Sincennes, and M. A. Rudnicki. Satellite cells and skeletal muscle regeneration. Compr. Physiol. 5(3):1027–1059, 2015.CrossRefGoogle Scholar
- 15.Fedorov, Y. V., R. S. Rosenthal, and B. B. Olwin. Oncogenic ras-induced proliferation requires autocrine fibroblast growth factor 2 signaling in skeletal muscle cells. J. Cell Biol. 152(6):1301–1305, 2001.CrossRefGoogle Scholar
- 16.Fu, X., J. Xiao, Y. Wei, S. Li, Y. Liu, J. Yin, K. Sun, H. Sun, H. Wang, Z. Zhang, B. T. Zhang, C. Sheng, H. Wang, and P. Hu. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 25(9):1082–1083, 2015.CrossRefGoogle Scholar
- 17.Gaudet, S., K. A. Janes, J. G. Albeck, E. A. Pace, D. A. Lauffenburger, and P. K. Sorger. A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol. Cell. Proteom. 4(10):1569–1590, 2005.CrossRefGoogle Scholar
- 18.Heinemann, T., and A. Raue. Model calibration and uncertainty analysis in signaling networks. Curr. Opin. Biotechnol. 39:143–149, 2016.CrossRefGoogle Scholar
- 19.Janes, K. A. An analysis of critical factors for quantitative immunoblotting. Sci. Signal. 8(371):rs2, 2015.CrossRefGoogle Scholar
- 20.Janes, K. A., J. G. Albeck, S. Gaudet, P. K. Sorger, D. A. Lauffenburger, and M. B. Yaffe. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310(5754):1646–1653, 2005.CrossRefGoogle Scholar
- 21.Janes, K. A., and M. B. Yaffe. Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell Biol. 7(11):820–828, 2006.CrossRefGoogle Scholar
- 22.Joanisse, S., and G. Parise. Cytokine mediated control of muscle stem cell function. Adv. Exp. Med. Biol. 900:27–44, 2016.CrossRefGoogle Scholar
- 23.Jones, N. C., Y. V. Fedorov, R. S. Rosenthal, and B. B. Olwin. Erk1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J. Cell. Physiol. 186(1):104–115, 2001.CrossRefGoogle Scholar
- 24.Kellogg, R. A., and S. Tay. Noise facilitates transcriptional control under dynamic inputs. Cell 160(3):381–392, 2015.CrossRefGoogle Scholar
- 25.Kemp, M. L., L. Wille, C. L. Lewis, L. B. Nicholson, and D. A. Lauffenburger. Quantitative network signal combinations downstream of tcr activation can predict il-2 production response. J. Immunol. 178(8):4984–4992, 2007.CrossRefGoogle Scholar
- 26.Kreeger, P. K. Using partial least squares regression to analyze cellular response data. Sci. Signal. 6(271):tr7, 2013.CrossRefGoogle Scholar
- 27.Kumar, N., A. Wolf-Yadlin, F. M. White, and D. A. Lauffenburger. Modeling her2 effects on cell behavior from mass spectrometry phosphotyrosine data. PLoS Comput. Biol. 3(1):e4, 2007.CrossRefGoogle Scholar
- 28.Lagha, M., T. Sato, L. Bajard, P. Daubas, M. Esner, D. Montarras, F. Relaix, and M. Buckingham. Regulation of skeletal muscle stem cell behavior by pax3 and pax7. Cold Spring Harb. Symp. Quant. Biol. 73:307–315, 2008.CrossRefGoogle Scholar
- 29.Lawlor, M. A., X. Feng, D. R. Everding, K. Sieger, C. E. Stewart, and P. Rotwein. Dual control of muscle cell survival by distinct growth factor-regulated signaling pathways. Mol. Cell. Biol. 20(9):3256–3265, 2000.CrossRefGoogle Scholar
- 30.Miller-Jensen, K., K. A. Janes, J. S. Brugge, and D. A. Lauffenburger. Common effector processing mediates cell-specific responses to stimuli. Nature 448(7153):604–608, 2007.CrossRefGoogle Scholar
- 31.Mueck, T., F. Berger, I. Buechsler, R. S. Valchanova, L. Landuzzi, P. L. Lollini, K. Klingel, and B. Munz. Traf6 regulates proliferation and differentiation of skeletal myoblasts. Differentiation 81(2):99–106, 2011.CrossRefGoogle Scholar
- 32.Munoz-Canoves, P., C. Scheele, B. K. Pedersen, and A. L. Serrano. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280:4131–4148, 2013.CrossRefGoogle Scholar
- 33.Nagata, Y., K. Ohashi, E. Wada, Y. Yuasa, M. Shiozuka, Y. Nonomura, and R. Matsuda. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation. Exp. Cell Res. 326(1):112–124, 2014.CrossRefGoogle Scholar
- 34.Ogura, Y., S. M. Hindi, S. Sato, G. Xiong, S. Akira, and A. Kumar. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat. Commun. 6:10123, 2015.CrossRefGoogle Scholar
- 35.Palacios, D., C. Mozzetta, S. Consalvi, G. Caretti, V. Saccone, V. Proserpio, V. E. Marquez, S. Valente, A. Mai, S. V. Forcales, V. Sartorelli, and P. L. Puri. TNF/p38alpha/polycomb signaling to pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7(4):455–469, 2010.CrossRefGoogle Scholar
- 36.Patterson, K. I., T. Brummer, P. M. O’Brien, and R. J. Daly. Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem. J. 418(3):475–489, 2009.CrossRefGoogle Scholar
- 37.Pawlikowski, B., T. Orion Vogler, K. Gadek, and B. Olwin. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev. Dyn. 2017. doi: 10.1002/dvdy.24495.Google Scholar
- 38.Price, F. D., J. von Maltzahn, C. F. Bentzinger, N. A. Dumont, H. Yin, N. C. Chang, D. H. Wilson, J. Frenette, and M. A. Rudnicki. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat. Med. 20(10):1174–1181, 2014.CrossRefGoogle Scholar
- 39.Puri, P. L., and V. Sartorelli. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J. Cell. Physiol. 185(2):155–173, 2000.CrossRefGoogle Scholar
- 40.Rando, T. A., and H. M. Blau. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125(6):1275–1287, 1994.CrossRefGoogle Scholar
- 41.Rudnicki, M. A., F. Le Grand, I. McKinnell, and S. Kuang. The molecular regulation of muscle stem cell function. CSH Symp. Quant. Biol. 73:323–331, 2008.CrossRefGoogle Scholar
- 42.Serra, C., D. Palacios, C. Mozzetta, S. V. Forcales, I. Morantte, M. Ripani, D. R. Jones, K. Du, U. S. Jhala, C. Simone, and P. L. Puri. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol. Cell 28(2):200–213, 2007.CrossRefGoogle Scholar
- 43.Tidball, J. G. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 17(3):165–178, 2017.CrossRefGoogle Scholar
- 44.Tierney, M. T., T. Aydogdu, D. Sala, B. Malecova, S. Gatto, P. L. Puri, L. Latella, and A. Sacco. Stat3 signaling controls satellite cell expansion and skeletal muscle repair. Nat. Med. 20(10):1182–1186, 2014.CrossRefGoogle Scholar
- 45.Wales, S., S. Hashemi, A. Blais, and J. C. McDermott. Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling. Nucleic Acids Res. 42(18):11349–11362, 2014.CrossRefGoogle Scholar
- 46.Xiao, F., H. Wang, X. Fu, Y. Li, K. Ma, L. Sun, X. Gao, and Z. Wu. Oncostatin m inhibits myoblast differentiation and regulates muscle regeneration. Cell Res. 21(2):350–364, 2011.CrossRefGoogle Scholar
- 47.Yin, H., F. Price, and M. A. Rudnicki. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93(1):23–67, 2013.CrossRefGoogle Scholar