Skip to main content
Log in

Ovarian and Breast Cancer Migration Dynamics on Laminin and Fibronectin Bi-directional Gradient Fibers Fabricated via Multiphoton Excited Photochemistry

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Migration mis-regulation is a hallmark of cancer, and remains an important problem in cancer biology. We postulate the need for better in vitro models to understand the details of cell–matrix interactions. Here, we utilized multiphoton excited (MPE) photochemistry to fabricate models to systematically study migration dynamics operative in breast and ovarian cancer. Gradients are a convenient means to modulate concentration and also have been implicated in metastases. We specifically pattern sub-micron structured gradients from laminin and fibronectin whose up-regulation is associated with increased metastasis and poor prognosis. We developed a new continuous linear bi-directional gradient design, permitting exploration of the underlying cell–matrix interactions of migration, including speed, directness, and f-actin cytoskeleton alignment as a function of concentration. These new models provide both contact guidance and ECM binding cues, and provide a more relevant environment than possible with existing technologies such as flow chambers or 2D printed surfaces. We found an overall increase in these processes with increasing concentration on both laminin and fibronectin gradients for a series of ovarian and breast cancer lines. Moreover, directness was higher for more metastatic cells, indicating that epithelial or mesenchymal state of the cell type governs the dynamics. However, the specifics of the speed and directedness depend on both the cell type and protein, thus we found that we must consider these processes collectively to obtain a self-consistent picture of the migration. For this purpose, we performed a linear discriminate analysis (LDA) and successfully classified the different cell types on the two protein gradients without molecular biology analysis. The bi-gradient structures are versatile tools to performing detailed studies of cell migration, specifically haptotxis. We further suggest the can be used in assessing efficacy of drug treatments targeted at specific matrix components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ahmed, N., C. Riley, G. Rice, and M. Quinn. Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clin. Exp. Metastasis 22:391–402, 2005.

    Article  Google Scholar 

  2. Ajeti, V., C. H. Lien, S. J. Chen, P. J. Su, J. M. Squirrell, K. H. Molinarolo, G. E. Lyons, K. W. Eliceiri, B. M. Ogle, and P. J. Campagnola. Image-inspired 3D multiphoton excited fabrication of extracellular matrix structures by modulated raster scanning. Opt. Express 21:25346–25355, 2013.

    Article  Google Scholar 

  3. Alexander, S., and P. Friedl. Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol. Med. 18:13–26, 2012.

    Article  Google Scholar 

  4. Arnold, M., V. C. Hirschfeld-Warneken, T. Lohmüller, P. Heil, J. Blümmel, E. A. Cavalcanti-Adam, M. López-García, P. Walther, H. Kessler, B. Geiger, and J. P. Spatz. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 8:2063–2069, 2008.

    Article  Google Scholar 

  5. Bast, Jr, R. C., B. Hennessy, and G. B. Mills. The biology of ovarian cancer: new opportunities for translation. Nat. Rev. Cancer 9:415–428, 2009.

    Article  Google Scholar 

  6. Basu, S., L. P. Cunningham, G. D. Pins, K. A. Bush, R. Taboada, A. R. Howell, J. Wang, and P. J. Campagnola. Multiphoton excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation. Biomacromol 6:1465–1474, 2005.

    Article  Google Scholar 

  7. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18:1909–1925, 2004.

    Article  Google Scholar 

  8. Bredfeldt, J. S., Y. Liu, M. W. Conklin, P. J. Keely, T. R. Mackie, and K. W. Eliceiri. Automated quantification of aligned collagen for human breast carcinoma prognosis. J. Pathol. Inform. 5:28, 2014.

    Article  Google Scholar 

  9. Brewer, M., J. T. Wharton, J. Wang, A. McWatters, N. Auersperg, D. Gershenson, R. Bast, and C. Zou. in vitro model of normal, immortalized ovarian surface epithelial and ovarian cancer cells for chemoprevention of ovarian cancer. Gynecol. Oncol. 98:182–192, 2005.

    Article  Google Scholar 

  10. Bush, K., P. Driscoll, E. Soto, C. Lambert, W. McGimpsey, and G. Pins. Designing tailored biomaterial surfaces to direct keratinocyte morphology, attachment, and differentiation. J. Biomed. Mater. Res. Part A 90:999–1009, 2009.

    Article  Google Scholar 

  11. Cannistra, S. A., C. Ottensmeier, J. Niloff, B. Orta, and J. DiCarlo. Expression and function of β1 and αvβ3 integrins in ovarian cancer. Gynecol. Oncol. 58:216–225, 1995.

    Article  Google Scholar 

  12. Chen, X., M. A. Brewer, C. Zou, and P. J. Campagnola. Adhesion and migration of ovarian cancer cells on crosslinked laminin fibers nanofabricated by multiphoton excited photochemistry. Integr. Biol. 1:469–476, 2009.

    Article  Google Scholar 

  13. Chen, X., Y.-D. Su, V. Ajeti, S.-J. Chen, and P. J. Campagnola. Cell adhesion on micro-structured fibronectin gradients fabricated by multiphoton excited photochemistry. Cell. Mol. Bioeng. 5:307–319, 2012.

    Article  Google Scholar 

  14. Cunningham, L. P., M. P. Veilleux, and P. J. Campagnola. Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt. Express 14:8613–8621, 2006.

    Article  Google Scholar 

  15. de Rooij, J., A. Kerstens, G. Danuser, M. A. Schwartz, and C. M. Waterman-Storer. Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol. 171:153–164, 2005.

    Article  Google Scholar 

  16. Debnath, J., S. K. Muthuswamy, and J. S. Brugge. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30:256–268, 2003.

    Article  Google Scholar 

  17. Ding, J. A., D. Li, X. Z. Wang, C. D. Wang, and T. Wu. Fibronectin promotes invasiveness and focal adhesion kinase tyrosine phosphorylation of human colon cancer cell. Hepatogastroenterology 55:2072–2076, 2008.

    Google Scholar 

  18. Engbring, J. A., and H. K. Kleinman. The basement membrane matrix in malignancy. J. Pathol. 200:465–470, 2003.

    Article  Google Scholar 

  19. Etienne-Manneville, S. Polarity proteins in migration and invasion. Oncogene 27:6970–6980, 2008.

    Article  Google Scholar 

  20. Fosser, K. A., and R. G. Nuzzo. Fabrication of patterned multicomponent protein gradients and gradient arrays using microfluidic depletion. Anal. Chem. 75:5775–5782, 2003.

    Article  Google Scholar 

  21. Furcht, L. T., J. B. McCarthy, S. L. Palm, M. L. Basara, and J. Enenstein. Peptide fragments of laminin and fibronectin promote migration (haptotaxis and chemotaxis) of metastatic cells. Ciba Found. Symp. 108:130–145, 1984.

    Google Scholar 

  22. Gardner, M. J., L. M. H. Jones, J. B. Catterall, and G. A. Turner. Expression of cell adhesion molecules on ovarian tumour cell lines and mesothelial cells, in relation to ovarian cancer metastasis. Cancer Lett. 91:229–234, 1995.

    Article  Google Scholar 

  23. Gunawan, R. C., E. R. Choban, J. E. Conour, J. Silvestre, L. B. Schook, H. R. Gaskins, D. E. Leckband, and P. J. Kenis. Regiospecific control of protein expression in cells cultured on two-component counter gradients of extracellular matrix proteins. Langmuir 21:3061–3068, 2005.

    Article  Google Scholar 

  24. Gunawan, R. C., J. Silvestre, H. R. Gaskins, P. J. Kenis, and D. E. Leckband. Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir 22:4250–4258, 2006.

    Article  Google Scholar 

  25. He, R.-Y., V. Ajeti, S.-J. Chen, M. A. Brewer, and P. J. Campagnola. Ovarian cancer cell adhesion/migration dynamics on micro-structured laminin gradients fabricated by multiphoton excited photochemistry. Bioengineering 2:139–159, 2015.

    Article  Google Scholar 

  26. Howlader, N., A. M. Noone, M. Krapcho, J. Garshell, D. Miller, S. F. Altekruse, C. L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, Lewis, H. S. Chen, E. J. Feuer, and K. A. Cronin. SEER Cancer Statistics Review, 1975–2012. Bethesda: National Cancer Institute, 2015.

    Google Scholar 

  27. Huang, S., J. B. Robinson, A. DeGuzman, C. D. Bucana, and I. J. Fidler. Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Can. Res. 60:5334–5339, 2000.

    Google Scholar 

  28. Huang, R. Y., M. Wong, T. Tan, K. Kuay, A. Ng, V. Chung, Y. Chu, N. Matsumura, H. Lai, and Y. Lee. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis. 4:e915, 2013.

    Article  Google Scholar 

  29. Huttenlocher, A., and A. R. Horwitz. Integrins in cell migration. Cold Spring Harbor Perspect. Biol. 3:a005074, 2011.

    Article  Google Scholar 

  30. Jeon, N. L., S. K. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides. Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316, 2000.

    Article  Google Scholar 

  31. Kaehr, B., R. Allen, D. J. Javier, J. Currie, and J. B. Shear. Guiding neuronal development with in situ microfabrication. Proc. Natl. Acad. Sci. USA 101:16104–16108, 2004.

    Article  Google Scholar 

  32. Kaunas, R., P. Nguyen, S. Usami, and S. Chien. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl. Acad. Sci. USA 102:15895–15900, 2005.

    Article  Google Scholar 

  33. Keely, P. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J. Mammary Gland Biol. Neoplasia 16:205–219, 2011.

    Article  Google Scholar 

  34. Kenny, H. A., C.-Y. Chiang, E. A. White, E. M. Schryver, M. Habis, I. L. Romero, A. Ladanyi, C. V. Penicka, J. George, and K. Matlin. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Investig. 124:4614, 2014.

    Article  Google Scholar 

  35. Kenny, H. A., C. Y. Chiang, E. A. White, E. M. Schryver, M. Habis, I. L. Romero, A. Ladanyi, C. V. Penicka, J. George, K. Matlin, A. Montag, K. Wroblewski, S. D. Yamada, A. P. Mazar, D. Bowtell, and E. Lengyel. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Investig. 124:4614–4628, 2014.

    Article  Google Scholar 

  36. Kenny, H. A., S. Kaur, L. M. Coussens, and E. Lengyel. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J. Clin. Investig. 118:1367–1379, 2008.

    Article  Google Scholar 

  37. LaFratta, C. N., J. T. Fourkas, T. Baldacchini, and R. A. Farrer. Multiphoton fabrication. Angew. Chem. Int. Ed. 46:6238–6258, 2007.

    Article  Google Scholar 

  38. Latifi, A., K. Abubaker, N. Castrechini, A. C. Ward, C. Liongue, F. Dobill, J. Kumar, E. W. Thompson, M. A. Quinn, and J. K. Findlay. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J. Cell. Biochem. 112:2850–2864, 2011.

    Article  Google Scholar 

  39. Lessan, K., D. J. Aguiar, T. Oegema, L. Siebenson, and A. P. N. Skubitz. CD44 and β1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am. J. Pathol. 154:1525–1537, 1999.

    Article  Google Scholar 

  40. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.

    Article  Google Scholar 

  41. Liotta, L., and E. Kohn. The microenvironment of the tumor-host interface. Nature 411:375–379, 2001.

    Article  Google Scholar 

  42. Maruo, S., O. Nakamura, and S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22:132–134, 1997.

    Article  Google Scholar 

  43. Mooney, J., A. Hunt, J. McIntosh, C. Liberko, D. Walba, and C. Rogers. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl. Acad. Sci. 93:12287–12291, 1996.

    Article  Google Scholar 

  44. Ning, Y., R. Zeineldin, Y. Liu, M. Rosenberg, M. S. Stack, and L. G. Hudson. Down-regulation of integrin α2 surface expression by mutant epidermal growth factor receptor (EGFRvIII) induces aberrant cell spreading and focal adhesion formation. Can. Res. 65:9280–9286, 2005.

    Article  Google Scholar 

  45. Oudin, M. J., O. Jonas, T. Kosciuk, L. C. Broye, B. C. Guido, J. Wyckoff, D. Riquelme, J. M. Lamar, S. B. Asokan, C. Whittaker, D. Ma, R. Langer, M. J. Cima, K. B. Wisinski, R. O. Hynes, D. A. Lauffenburger, P. J. Keely, J. E. Bear, and F. B. Gertler. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6:516–531, 2016.

    Article  Google Scholar 

  46. Petrie, R. J., A. D. Doyle, and K. M. Yamada. Random versus directionally persistent cell migration. Nat. Rev. Mol. Cell Biol. 10:538–549, 2009.

    Article  Google Scholar 

  47. Pitts, J. D., P. J. Campagnola, G. A. Epling, and S. L. Goodman. Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33:1514–1523, 2000.

    Article  Google Scholar 

  48. Plummer, S. T., Q. Wang, P. W. Bohn, R. Stockton, and M. A. Schwartz. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold. Langmuir 19:7528–7536, 2003.

    Article  Google Scholar 

  49. Poon, S. L., C. Klausen, G. L. Hammond, and P. C. Leung. 37-kDa laminin receptor precursor mediates GnRH-II-induced MMP-2 expression and invasiveness in ovarian cancer cells. Mol. Endocrinol. 25:327–338, 2011.

    Article  Google Scholar 

  50. Rhoads, D. S., and J.-L. Guan. Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp. Cell Res. 313:3859–3867, 2007.

    Article  Google Scholar 

  51. Ricciardelli, C., and R. J. Rodgers. Extracellular matrix of ovarian tumors. Semin. Reprod. Med. 24:270–282, 2006.

    Article  Google Scholar 

  52. Roussos, E. T., J. S. Condeelis, and A. Patsialou. Chemotaxis in cancer. Nat. Rev. Cancer 11:573–587, 2011.

    Article  Google Scholar 

  53. Rowe, R. G., and S. J. Weiss. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu. Rev. Cell Dev. Biol. 25:567–595, 2009.

    Article  Google Scholar 

  54. Shibata, K., F. Kikkawa, and A. Nawa. Enhanced matrix metalloproteinase 9 secretion by fibronectin both focal adhesion kinase and c-Ras are required for the in ovarian cancer cells. Can. Res. 58:900–903, 1998.

    Google Scholar 

  55. Sisci, D., S. Aquila, E. Middea, M. Gentile, M. Maggiolini, F. Mastroianni, D. Montanaro, and S. Ando. Fibronectin and type IV collagen activate ERalpha AF-1 by c-Src pathway: effect on breast cancer cell motility. Oncogene 23:8920–8930, 2004.

    Article  Google Scholar 

  56. Sood, A. K., J. E. Coffin, G. B. Schneider, M. S. Fletcher, B. R. DeYoung, L. M. Gruman, D. M. Gershenson, M. D. Schaller, and M. J. Hendrix. Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am. J. Pathol. 165:1087–1095, 2004.

    Article  Google Scholar 

  57. Sridhar, M., S. Basu, V. L. Scranton, and P. J. Campagnola. Construction of a laser scanning microscope for multiphoton excited optical fabrication. Rev. Sci. Instrum. 74:3474–3477, 2003.

    Article  Google Scholar 

  58. Strobel, T., and S. A. Cannistra. β1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol. Oncol. 73:362–367, 1999.

    Article  Google Scholar 

  59. Théry, M., V. Racine, M. Piel, A. Pépin, A. Dimitrov, Y. Chen, J.-B. Sibarita, and M. Bornens. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. 103:19771–19776, 2006.

    Article  Google Scholar 

  60. Turpeenniemi-Hujanen, T., U. Thorgeirsson, C. Rao, and L. Liotta. Laminin increases the release of type IV collagenase from malignant cells. J. Biol. Chem. 261:1883–1889, 1986.

    Google Scholar 

  61. von Philipsborn, A. C., S. Lang, Z. Jiang, F. Bonhoeffer, and M. Bastmeyer. Substrate-bound protein gradients for cell culture fabricated by microfluidic networks and microcontact printing. Sci. STKE 2007:pl6, 2007.

    Article  Google Scholar 

  62. Wodarz, A., and I. Nathke. Cell polarity in development and cancer. Nat. Cell Biol. 9:1016–1024, 2007.

    Article  Google Scholar 

  63. Yousif, N. G. Fibronectin promotes migration and invasion of ovarian cancer cells through up-regulation of FAK-PI3K/Akt pathway. Cell Biol. Int. 38:85–91, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

PJC gratefully acknowledges support under a University of Wisconsin Vilas Award, the Rivkin Foundation, and NSF CBET – 1445650 and NIH NCI CA206561-01. We thank Prof. Patricia Keely and Prof. Molly Brewer for technical discussions.

Conflict of interest

Visar Ajeti, Jorge Lara-Santiago, Samuel Alkmin, and Paul J. Campagnola declare no conflicts of interest.

Ethical standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Campagnola.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajeti, V., Lara-Santiago, J., Alkmin, S. et al. Ovarian and Breast Cancer Migration Dynamics on Laminin and Fibronectin Bi-directional Gradient Fibers Fabricated via Multiphoton Excited Photochemistry. Cel. Mol. Bioeng. 10, 295–311 (2017). https://doi.org/10.1007/s12195-017-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0492-9

Keywords

Navigation