Skip to main content
Log in

Viscoelasticity Measurements Reveal Rheological Differences Between Stem-like and Non-stem-like Breast Cancer Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Defining the characteristics of cancer stem cells (CSC) has become an important subject in cancer research during the past decade. Although molecular surface expression levels have been used for CSC recognition, the clinical and prognostic impacts of these markers have remained a controversial issue. The finding that cancerous cells are considerably more deformable than normal ones provides the motivation for the hypothesis that the mechanical properties can be used as biomarkers to distinguish between stem-like and non-stem-like cancer cells. In this study, using micropipette aspiration (MA) and intracellular particle tracking (IPT) microrheology, measurements of the whole-cell and local viscoelasticity were made on four breast cancer cell lines with different CSC phenotypes based on their surface markers. Stem-like Hs578T and MDA-MB-231 cell lines were found to be the most deformable, while the non-stem-like MDA-MB-468 line was the least deformable. The non-stem-like BT-20 cell line showed an intermediate deformability. The enhanced deformability for stem-like cells was consistent with the observed lower and more dispersed F-actin content for the stem-like cells. Therefore, the cytoskeleton-related differences in the rheological properties of cancer cells can be a potential biomarker for CSC and eventually lead to novel cancer diagnostic and therapeutic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Al-Hajj, M., M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. 100:3983–3988, 2003.

    Article  Google Scholar 

  2. Boal, D. Three-Dimensional Networks in Mechanics of the Cell. New York: Cambridge University Press, pp. 97–131, 2002.

    Google Scholar 

  3. Burdick, M. M., K. A. Henson, L. F. Delgadillo, Y. E. Choi, D. J. Goetz, D. F. J. Tees, and F. Benencia. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways? Front. Oncol. 2(103):1–11, 2012.

    Google Scholar 

  4. Caspi, A., R. Granek, and M. Elbaum. Enhanced diffusion in active intracellular transport. Phys. Rev. Lett. 85:5655–5658, 2000.

    Article  Google Scholar 

  5. Crocker, J. C., and B. D. Hoffman. Multiple-particle tracking and two-point microrheology in cells. Methods Cell Biol. 83:141–178, 2007.

    Article  Google Scholar 

  6. Curran-Everett, D. Multiple comparisons: philosophies and illustrations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279:R1–R8, 2000.

    Google Scholar 

  7. Duits, M. H. G., Y. Li, S. A. Vanapalli, and F. Mugele. Mapping of spatiotemporal heterogeneous particle dynamics in living cells. Phys. Rev. E 79:1–11, 2009.

    Article  MathSciNet  Google Scholar 

  8. Egeblad, M., S. N. Nakason, and Z. Werb. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18(6):884–901, 2010.

    Article  Google Scholar 

  9. Guck, J., S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby. Optical deformability as an Inherent Cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88:3689–3698, 2005.

    Article  Google Scholar 

  10. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.

    Article  Google Scholar 

  11. Hoffman, B. D., and J. C. Crocker. Cell mechanics: dissecting the physical responses of cells to force. Ann. Rev. Biomed. Eng. 11:259–288, 2009.

    Article  Google Scholar 

  12. Hoffman, B. D., G. Massiera, K. M. Van Citters, and J. C. Crocker. The consensus mechanics of cultured mammalian cells. Proc. Natl. Acad. Sci. USA 103:10259–10264, 2006.

    Article  Google Scholar 

  13. Jacobs, C. R., H. Huang, and R. Y. Kwon. Introduction to cell mechanics and mechanobiology. Garland Sci. 19:151–153, 2012.

    Google Scholar 

  14. Kim, Y., K. M. Joo, J. Jin, and D. Nam. Cancer stem cells and their mechanism of chemo-radiation resistance. Int. J. Stem Cells 2(2):109–114, 2009.

    Article  Google Scholar 

  15. Kojić, N., M. Milošević, D. Petrović, V. Isailović, A. F. Sarioglu, D. A. Haber, M. Kojić, and M. A. Toner. Computational study of circulating large tumor cells traversing microvessels. Comput. Biol. Med. 63:187–195, 2015.

    Article  Google Scholar 

  16. Lammerding, J., K. N. Dahl, D. E. Discher, and R. D. Kamm. Methods in cell biology. Nucl. Mech. Methods 83:269–294, 2007.

    Google Scholar 

  17. Lee, G. Y. H., and C. T. Lim. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25:111–118, 2007.

    Article  Google Scholar 

  18. Lekka, M., P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy Eur. Biophys. J. 28:312–316, 1999.

    Google Scholar 

  19. Li, Y., J. Schnekenburger, and M. H. G. Duits. Intracellular particle tracking as a tool for tumor cell characterization. J. Biomed. Opt. 14(6):1–7, 2009.

    Article  Google Scholar 

  20. Lim, C. T., E. Z. Zhou, and S. T. Quek. Mechanical models for living cells– a review. J. Biomech. 39:195–216, 2006.

    Article  Google Scholar 

  21. Lincoln, B., H. M. Erickson, S. Schinkinger, F. Wottawah, D. Mitchell, S. Ulvick, C. Bilby, and J. Guck. Deformability-based flow cytometry. Cytom. A 59(2):203–209, 2004.

    Article  Google Scholar 

  22. Louie, E., S. Nik, J. Chen, M. Schmidt, B. Song, C. Pacson, X. F. Chen, S. Park, J. Ju, and E. Chen. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 12(6):R94, 2010.

    Article  Google Scholar 

  23. Mason, T. G., and K. Ganesan. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79:3282–3285, 1997.

    Article  Google Scholar 

  24. Merryman, W. D., P. D. Bieniek, F. Guilak, and M. S. Sacks. Viscoelastic properties of the aortic valve interstitial cell. J. Biomech. Eng. 131(4):041005, 2009.

    Article  Google Scholar 

  25. Pai, A., P. Sundd, and D. F. J. Tees. In situ microrheological determination of neutrophil stiffening following adhesion in a model capillary. Ann. Biomed. Eng. 36:596–603, 2008.

    Article  Google Scholar 

  26. Pangarkar, C., A. T. Dinh, and S. Mitragotri. Dynamics and spatial organization of endosomes in mammalian cells. Phys. Rev. Lett. 95:158101, 2005.

    Article  Google Scholar 

  27. Petrie, R. J., H. Koo, and K. M. Yamada. Generation of compartmentalized pressure by a nuclear piston governs cell motility in 3D matrix. Science 345(6200):1062–1065, 2014.

    Article  Google Scholar 

  28. Prise, K. M., and A. Saran. Concise review: stem cell effects in radiation risk. Stem Cells 29:1315–1321, 2011.

    Google Scholar 

  29. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    Article  Google Scholar 

  30. Schmid-Schonbein, G. W., K. L. Sung, H. Tozeren, R. Skalak, and S. Chien. Passive mechanical properties of human leukocytes. Biophys. J. 36:243–256, 1981.

    Article  Google Scholar 

  31. Sehl, M. E., M. Shimada, A. Landeros, K. Lange, and M. S. Wicha. Modeling of cancer stem cell state transitions predicts therapeutic response. PLoS ONE 10(9):e0135797, 2015.

    Article  Google Scholar 

  32. Sheridan, C., H. Kishimoto, R. K. Fuchs, S. Mehrotra, P. Bhat-Nakshatri, C. H. Turner, and R. Jr. Goulet, S. Badve, and H. Nakshatri. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 8(5):R59, 2006.

    Article  Google Scholar 

  33. Snider, J., F. Lin, N. Zahedi, V. Rodionov, C. C. Yu, and S. P. Gross. Intracellular actin-based transport: how far you go depends on how often you switch. Proc. Natl. Acad. Sci. USA 101:13204–13209, 2004.

    Article  Google Scholar 

  34. Stroka, K. M., Z. Gu, S. X. Sun, and K. Konstantopoulos. Bioengineering paradigms for cell migration in confined microenvironments. Curr. Opin. Cell Biol. 30:42–50, 2014.

    Article  Google Scholar 

  35. Stroka, K. M., H. Jiang, S. Chen, Z. Tong, D. Wirtz, S. X. Sun, and K. Konstantopoulos. Water permeation drives tumor cell migration in confined microenvironments. Cell 157:611–623, 2014.

    Article  Google Scholar 

  36. Sundd, P., X. Zou, D. J. Goetz, and D. F. J. Tees. Leukocyte adhesion in capillary-sized, P selectin-coated micropipettes. Microcirculation 15:109–122, 2008.

    Article  Google Scholar 

  37. Tees, D. F. J., R. E. Waugh, and D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin-carbohydrate bonds. Biophys. J. 80:668–682, 2001.

    Article  Google Scholar 

  38. Thiery, J. P., and J. P. Sleeman. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7:131–142, 2006.

    Article  Google Scholar 

  39. Tseng, Y., T. P. Kole, and D. Wirtz. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83:3162–3176, 2002.

    Article  Google Scholar 

  40. Wirtz, D., K. Konstantopoulos, and P. C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11:512–522, 2011.

    Article  Google Scholar 

  41. Wu, Z. Z., G. Zhang, M. Long, H. B. Wang, G. B. Song, and S. X. Cai. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37:279–290, 2000.

    Google Scholar 

  42. Wyckoff, J. B., J. G. Jones, J. S. Condeelis, and J. E. Segall. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60:2504–2511, 2000.

    Google Scholar 

  43. Yanai, M., J. P. Butler, T. Suzuki, A. Kanda, M. Kurachi, H. Tashiro, and H. Sasaki. Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils. Am. J. Physiol. Cell Physiol. 277:C432–C440, 1999.

    Google Scholar 

  44. Yanai, M., J. P. Butler, T. Suzuki, H. Sasaki, and H. Higuchi. Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol. 287:C603–C611, 2004.

    Article  Google Scholar 

  45. Yap, B., and R. D. Kamm. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J. Appl. Physiol. 98:1930–1939, 2005.

    Article  Google Scholar 

  46. Zhou, E. H., S. T. Quek, and C. T. Lim. Power-law rheology analysis of cells undergoing micropipette aspiration. Biomech. Model. Mechanobiol. 9:563–572, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grants CBET-1106118 and Major Research Instrumentation CBET-1039869. The authors would like to thank Mr. Grady Carlson (Department of Chemical and Biomolecular Engineering, Ohio University) for his collaboration and help in lab instruction.

Conflict of interest

Amina Mohammadalipour, Monica Burdick and David Tees declare that they have no conflict of interest.

Ethical Standards

No human studies or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. J. Tees.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadalipour, A., Burdick, M.M. & Tees, D.F.J. Viscoelasticity Measurements Reveal Rheological Differences Between Stem-like and Non-stem-like Breast Cancer Cells. Cel. Mol. Bioeng. 10, 235–248 (2017). https://doi.org/10.1007/s12195-017-0485-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0485-8

Keywords

Navigation