Skip to main content

Advertisement

Log in

Investigating the Mechanobiology of Cancer Cell–ECM Interaction Through Collagen-Based 3D Scaffolds

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Deregulated dynamics of the extracellular matrix (ECM) are one of the hallmarks of cancer. Studies on tumor mechanobiology are thus expected to provide an insight into the disease pathogenesis as well as potentially useful biomarkers. Type I collagen is among the major determinants of breast ECM structural and tensile properties, and collagen modifications during tumor evolution drive a number of disease-related processes favoring cancer progression and invasion. We investigated the use of 3D collagen-based scaffolds to identify the modifications induced by cancer cells on the mechanical and structural properties of the matrix, comparing cell lines from two breast tumor subtypes with different clinical aggressiveness. Orthotopic implantation was used to investigate the collagen content and architecture of in vivo breast tumors generated by the two cell lines. MDA-MB-231, which belongs to the aggressive basal-like subtype, increased scaffold stiffness and overexpressed the matrix-modifying enzyme, lysyl oxidase (LOX), whereas luminal A MCF-7 cells did not significantly alter the mechanical characteristics of extracellular collagen. This replicates the behavior of in vivo tumors generated by MDA-MB-231, characterized by a higher collagen content and higher LOX levels than MCF-7. When LOX activity was blocked, the ability of MDA-MB-231 to alter scaffold stiffness was impaired. Our model could constitute a relevant in vitro tool to reproduce and investigate the biomechanical interplay subsisting between cancer cells and the surrounding ECM and its impact on tumor phenotype and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Acerbi, I., L. Cassereau, I. Dean, Q. Shi, A. Au, C. Park, Y. Y. Chen, J. Liphardt, E. S. Hwang, and V. M. Weaver. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. (Camb.) 7:1120–1134, 2015.

    Article  Google Scholar 

  2. Beer, F., E. Russell Johnsnon Jr., J. T. DeWolf, and D. F. Mazurek. Mechanics of Materials (6th ed.). New York: McGraw-Hill Publ., 2011.

    Google Scholar 

  3. Bergamaschi, A., E. Tagliabue, T. Sørlie, B. Naume, T. Triulzi, R. Orlandi, H. G. Russnes, J. M. Nesland, R. Tammi, P. Auvinen, V. M. Kosma, S. Ménard, and A. L. Børresen-Dale. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J. Pathol. 214:357–367, 2008.

    Article  Google Scholar 

  4. Bondareva, A., C. M. Downey, F. Ayres, W. Liu, S. K. Boyd, B. Hallgrimsson, and F. R. Jirik. The lysyl oxidase inhibitor, β-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS ONE 4:e5620, 2009.

    Article  Google Scholar 

  5. Bonnans, C., J. Chou, and Z. Werb. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801, 2014.

    Article  Google Scholar 

  6. Buehler, M. J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103:12285–12290, 2006.

    Article  Google Scholar 

  7. Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–122, 2009.

    Article  Google Scholar 

  8. Carey, S. P., T. M. D’Alfonso, S. J. Shin, and C. A. Reinhart-King. Mechanobiology of tumor invasion: engineering meets oncology. Crit. Rev. Oncol. Hematol. 83:170–183, 2012.

    Article  Google Scholar 

  9. Cassereau, L., Y. A. Miroshnikova, G. Ou, J. Lakins, and V. M. Weaver. A 3D tension bioreactor platform to study the interplay between ECM stiffness and tumor phenotype. J. Biotechnol. 193:66–69, 2015.

    Article  Google Scholar 

  10. Curino, A. C., L. H. Engelholm, S. S. Yamada, K. Holmbeck, L. R. Lund, A. A. Molinolo, N. Behrendt, B. S. Nielsen, and T. H. Bugge. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J. Cell Biol. 169:977–985, 2005.

    Article  Google Scholar 

  11. Cuzick, J., J. Warwick, E. Pinney, S. W. Duffy, S. Cawthorn, A. Howell, J. F. Forbes, and R. M. Warren. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J. Natl. Cancer Inst. 103:744–752, 2011.

    Article  Google Scholar 

  12. Du Fort, C. C., M. J. Paszek, and V. M. Weaver. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–319, 2011.

    Google Scholar 

  13. Dvorak, H. F., V. M. Weaver, T. D. Tlsty, and G. Bergers. Tumor microenvironment and progression. J. Surg. Oncol. 103:468–474, 2011.

    Article  Google Scholar 

  14. Elsamany, S., A. Alzahrani, S. A. Elkhalik, O. Elemam, E. Rawah, M. U. Farooq, M. Almatrafi, and F. K. Olayan. Prognostic value of mammographic breast density in patients with metastatic breast cancer. Med. Oncol. 31:96, 2014.

    Article  Google Scholar 

  15. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    Article  Google Scholar 

  16. Fenner, J., A. C. Stacer, F. Winterroth, T. D. Johnson, K. E. Luker, and G. D. Luker. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4:5512, 2014.

    Article  Google Scholar 

  17. Holliday, D. L., and V. Speirs. Choosing the right cell line for breast cancer research. Breast Cancer Res. 13:215, 2011.

    Article  Google Scholar 

  18. Huijbers, I. J., M. Iravani, S. Popov, D. Robertson, S. Al-Sarraj, C. Jones, and C. M. Isacke. A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS ONE 5:e9808, 2010.

    Article  Google Scholar 

  19. Infanger, D. W., M. E. Lynch, and C. Fischbach. Engineered culture models for studies of tumor–microenvironment interactions. Annu. Rev. Biomed. Eng. 15:29–53, 2013.

    Article  Google Scholar 

  20. Insua-Rodríguez, J., and T. Oskarsson. The extracellular matrix in breast cancer. Adv. Drug Deliv. Rev. 97:41–55, 2016.

    Article  Google Scholar 

  21. Janmey, P. A., and R. T. Miller. Mechanisms of mechanical signaling in development and disease. J. Cell Sci. 124:9–18, 2011.

    Article  Google Scholar 

  22. Kang, Y., P. M. Siegel, W. Shu, M. Drobnjak, S. M. Kakonen, C. Cordón-Cardo, T. A. Guise, and J. Massagué. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549, 2003.

    Article  Google Scholar 

  23. Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28:113–127, 2009.

    Article  Google Scholar 

  24. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, S. F. Fong, K. Csiszar, A. Giaccia, W. Weninger, M. Yamauchi, D. L. Gasser, and V. M. Weaver. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906, 2009.

    Article  Google Scholar 

  25. Mendez, M. G., S. Kojima, and R. D. Goldman. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24:1838–1851, 2010.

    Article  Google Scholar 

  26. Minardi, S., M. Sandri, J. O. Martinez, I. K. Yazdi, X. Liu, M. Ferrari, B. K. Weiner, A. Tampieri, and E. Tasciotti. Multiscale patterning of a biomimetic scaffold integrated with composite microspheres. Small 10:3943–3953, 2014.

    Article  Google Scholar 

  27. Nilsson, M., H. Adamo, A. Bergh, and S. HalinBergström. Inhibition of lysyl oxidase and lysyl oxidase-like enzymes has tumour-promoting and tumour-suppressing roles in experimental prostate cancer. Sci. Rep. 6:19, 2016.

    Article  Google Scholar 

  28. Oskarsson, T. Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl. 2):S66–S72, 2013.

    Article  Google Scholar 

  29. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.

    Article  Google Scholar 

  30. Payne, S. L., M. J. Hendrix, and D. A. Kirschmann. Paradoxical roles for lysyl oxidases in cancer—a prospect. J. Cell. Biochem. 101:1338–1354, 2007.

    Article  Google Scholar 

  31. Plodinec, M., M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. Lim, and C. A. Schoenenberger. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7:757–765, 2012.

    Article  Google Scholar 

  32. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

    Article  Google Scholar 

  33. Psaila, B., and D. Lyden. The metastatic niche: adapting the foreign soil. Nat. Rev Cancer 9:285–293, 2009.

    Article  Google Scholar 

  34. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.

    Article  Google Scholar 

  35. Schedin, P., and J. P. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3:a003228, 2011.

    Article  Google Scholar 

  36. Shawn, P. C., C. M. Kraning-Rush, R. M. Williams, and C. A. Reinhart-King. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33:4157–4165, 2012.

    Article  Google Scholar 

  37. Tan, Y., A. Tajik, J. Chen, Q. Jia, F. Chowdhury, L. Wang, J. Chen, S. Zhang, Y. Hong, H. Yi, D. C. Wu, Y. Zhang, F. Wei, Y. C. Poh, J. Seong, R. Singh, L. J. Lin, S. Doğanay, Y. Li, H. Jia, T. Ha, Y. Wang, B. Huang, and N. Wang. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5:4619, 2014.

    Google Scholar 

  38. Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:4167–4174, 2009.

    Article  Google Scholar 

  39. Wienke, D., G. C. Davies, D. A. Johnson, J. Sturge, M. B. Lambros, K. Savage, S. E. Elsheikh, A. R. Green, I. O. Ellis, D. Robertson, J. S. Reis-Filho, and C. M. Isacke. The collagen receptor Endo180 (CD280) is expressed on basal-like breast tumor cells and promotes tumor growth in vivo. Cancer Res. 67:10230–10240, 2007.

    Article  Google Scholar 

  40. Wozniak, M. A., and P. J. Keely. Use of three-dimensional collagen gels to study mechanotransduction in T47D breast epithelial cells. Biol. Proced. Online 7:144–161, 2005.

    Article  Google Scholar 

  41. Xu, W., R. Mezencev, B. Kim, L. Wang, J. McDonald, and T. Sulchek. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 7:e46609, 2012.

    Article  Google Scholar 

  42. Yang, X., S. Li, W. Li, J. Chen, X. Xiao, Y. Wang, G. Yan, and L. Chen. Inactivation of lysyl oxidase by β-aminopropionitrile inhibits hypoxia-induced invasion and migration of cervical cancer cells. Oncol. Rep. 29:541–548, 2013.

    Google Scholar 

  43. Zaman, M. H., L. M. Trapani, A. L. Sieminski, D. Mackellar, H. Gong, R. D. Kamm, A. Wells, D. A. Lauffenburger, and P. Matsudaira. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103:10889–10894, 2006.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Marco Palanca for his contribution to designing and fine-tuning the compression device. They also thank Silvia Bellissimo for editorial assistance.

Conflicts of Interest

Chiara Liverani, Laura Mercatali, Luca Cristofolini, Emanuele Giordano, Silvia Minardi, Giovanna Della Porta, Alessandro De Vita, Giacomo Miserocchi, Chiara Spadazzi, Ennio Tasciotti, Dino Amadori and Toni Ibrahim have no conflicts of interest to declare.

Research involving animals

All experimental animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of the Houston Methodist Research Institute (HMRI) protocol number AUP 0614-0033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Liverani.

Additional information

Associate Editor Chwee Teck Lim oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liverani, C., Mercatali, L., Cristofolini, L. et al. Investigating the Mechanobiology of Cancer Cell–ECM Interaction Through Collagen-Based 3D Scaffolds. Cel. Mol. Bioeng. 10, 223–234 (2017). https://doi.org/10.1007/s12195-017-0483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0483-x

Keywords

Navigation