Advertisement

Cellular and Molecular Bioengineering

, Volume 10, Issue 1, pp 89–101 | Cite as

Label-Free Automated Cell Tracking: Analysis of the Role of E-cadherin Expression in Collective Electrotaxis

  • Mark L. Lalli
  • Brooke Wojeski
  • Anand R. Asthagiri
Article

Abstract

Collective cell migration plays an important role in wound healing, organogenesis, and the progression of metastatic disease. Analysis of collective migration typically involves laborious and time-consuming manual tracking of individual cells within cell clusters over several dozen or hundreds of frames. Herein, we develop a label-free, automated algorithm to identify and track individual epithelial cells within a free-moving cluster. We use this algorithm to analyze the effects of partial E-cadherin knockdown on collective migration of MCF-10A breast epithelial cells directed by an electric field. Our data show that E-cadherin knockdown in free-moving cell clusters diminishes electrotactic potential, with empty vector MCF-10A cells showing 16% higher directedness than cells with E-cadherin knockdown. Decreased electrotaxis is also observed in isolated cells at intermediate electric fields, suggesting an adhesion-independent role of E-cadherin in regulating electrotaxis. In additional support of an adhesion-independent role of E-cadherin, isolated cells with reduced E-cadherin expression reoriented within an applied electric field 60% more quickly than control. These results have implications for the role of E-cadherin expression in electrotaxis and demonstrate proof-of-concept of an automated algorithm that is broadly applicable to the analysis of collective migration in a wide range of physiological and pathophysiological contexts.

Keywords

Cell–cell interactions Electrotaxis Guidance cues Image analysis 

Notes

Acknowledgments

We thank the members of the Asthagiri group for helpful discussions. This work was supported by the National Institutes of Health Grant R01CA138899.

Conflict of Interest

Mark L. Lalli, Brooke Wojeski, and Anand R. Asthagiri declare that they have no conflict of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Supplementary material

12195_2016_471_MOESM1_ESM.avi (21.9 mb)
Supplementary material 1 (AVI 22428 kb)
12195_2016_471_MOESM2_ESM.avi (21.9 mb)
Supplementary material 2 (AVI 22428 kb)
12195_2016_471_MOESM3_ESM.avi (21.9 mb)
Supplementary material 3 (AVI 22428 kb)
12195_2016_471_MOESM4_ESM.avi (21.9 mb)
Supplementary material 4 (AVI 22428 kb)
12195_2016_471_MOESM5_ESM.docx (1.3 mb)
Supplementary material 5 (DOCX 1339 kb)

References

  1. 1.
    Aftab, O., M. Fryknäs, U. Hammerling, R. Larsson, and M. G. Gustafsson. Detection of cell aggregation and altered cell viability by automated label-free video microscopy: A promising alternative to endpoint viability assays in high- throughput screening. J. Biomol. Screen. 20:372–381, 2015.CrossRefGoogle Scholar
  2. 2.
    Ahrens, E. T., and J. Zhong. In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection. NMR Biomed. 26:860–871, 2013.CrossRefGoogle Scholar
  3. 3.
    Anon, E., X. Serra-Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat, and B. Ladoux. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl. Acad. Sci. 109:10891–10896, 2012.CrossRefGoogle Scholar
  4. 4.
    Arora, A., and T. Qazi. Computer vision based tracking of biological cells: A review. Int. Conf. Adv. Res. Innov. 118–126, 2014.Google Scholar
  5. 5.
    Bengtsson, E., C. Wahlby, and J. Lindblad. Robust Cell Image segmentation methods. Pattern Recognit. Image Anal. 14:157–167, 2004.Google Scholar
  6. 6.
    Bradley, M. O., and N. A. Sharkey. Metagenicity and toxicity of visivle fluorescent light to cultured mammalian cells. Nature 267:673–678, 1977.CrossRefGoogle Scholar
  7. 7.
    Cai, D., S. C. Chen, M. Prasad, L. He, X. Wang, V. Choesmel-Cadamuro, J. K. Sawyer, G. Danuser, and D. J. Montell. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159, 2014.CrossRefGoogle Scholar
  8. 8.
    Carey, S. P., A. Starchenko, A. L. McGregor, and C. A. Reinhart-King. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30:615–630, 2013.CrossRefGoogle Scholar
  9. 9.
    Chalfound, J., M. Kociolek, A. Dima, M. Halter, A. Cardone, A. Peskin, P. Bajcsy, and M. Brady. Segmenting time-lapse phase contrast images of adjacent NIH 3T3 cells. J. Microsc. 249:41–52, 2013.CrossRefGoogle Scholar
  10. 10.
    Clark, A. G., and D. M. Vignjevic. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36:13–22, 2015.CrossRefGoogle Scholar
  11. 11.
    Cuzick, J., R. Holland, V. Barth, R. Davies, M. Faupel, I. Fentiman, H. J. Frischbier, J. L. LaMarque, M. Merson, V. Sacchini, D. Vanel, and U. Veronesi. Electropotential measurements as a new diagnostic modality for breast cancer. Lancet 352:359–363, 1998.CrossRefGoogle Scholar
  12. 12.
    Débarre, D., and E. Beaurepaire. Quantitative characterization of biological liquids for third-harmonic generation microscopy. Biophys. J. 92:603–612, 2007.CrossRefGoogle Scholar
  13. 13.
    Fogg, V. C., C.-J. Liu, and B. Margolis. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J. Cell Sci. 118:2859–2869, 2005.CrossRefGoogle Scholar
  14. 14.
    Friedl, P., and D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10:445–457, 2009.CrossRefGoogle Scholar
  15. 15.
    Friedl, P., J. Locker, E. Sahai, and J. E. Segall. Classifying collective cancer cell invasion. Nat. Cell Biol. 14:777–783, 2012.CrossRefGoogle Scholar
  16. 16.
    Graham, N. A., and A. R. Asthagiri. Epidermal growth factor-mediated T-cell factor/lymphoid enhancer factor transcriptional activity is essential but not sufficient for cell cycle progression in nontransformed mammary epithelial cells. J. Biol. Chem. 279:23517–23524, 2004.CrossRefGoogle Scholar
  17. 17.
    Hazan, R. B., and L. Norton. The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 273:9078–9084, 1998.CrossRefGoogle Scholar
  18. 18.
    Jaccard, N., N. Szita, and L. D. Griffin. Computer methods in biomechanics and biomedical engineering: Imaging and visualization segmentation of phase contrast microscopy images based on multi-scale local Basic Image Features histograms. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 1–9, 2015.Google Scholar
  19. 19.
    Kushiro, K., and A. R. Asthagiri. Modular design of micropattern geometry achieves combinatorial enhancements in cell motility. Langmuir 28:4357–4362, 2012.CrossRefGoogle Scholar
  20. 20.
    Lalli, M. L., and A. R. Asthagiri. Collective migration exhibits greater sensitivity but slower dynamics of alignment to applied electric fields. Cell. Mol. Bioeng. 8:247–257, 2015.CrossRefGoogle Scholar
  21. 21.
    Latt, S. A. Optical studies of metaphase chromosome organization. Clin. Genet. 19:154–161, 1976.Google Scholar
  22. 22.
    Li, L., R. Hartley, B. Reiss, Y. Sun, J. Pu, D. Wu, F. Lin, T. Hoang, S. Yamada, J. Jiang, and M. Zhao. E-cadherin plays an essential role in collective directional migration of large epithelial sheets. Cell. Mol. Life Sci. 69:2779–2789, 2012.CrossRefGoogle Scholar
  23. 23.
    Li, X., and J. Kolega. Effects of direct current electric fields on cell migration and actin filament distribution in bovine vasclar endothelial cells. J. Vasc. Res. 39:391–404, 2002.CrossRefGoogle Scholar
  24. 24.
    Marrison, J., L. Räty, P. Marriott, and P. O’Toole. Ptychography–a label free, high-contrast imaging technique for live cells using quantitative phase information. Sci. Rep. 3:2369, 2013.CrossRefGoogle Scholar
  25. 25.
    McCaig, C. D., B. Song, and A. M. Rajnicek. Electrical dimensions in cell science. J. Cell Sci. 122:4267–4276, 2009.CrossRefGoogle Scholar
  26. 26.
    Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29:140–145, 2012.CrossRefGoogle Scholar
  27. 27.
    Milano, D. F., N. A. Ngai, S. K. Muthuswamy, and A. R. Asthagiri. Regulators of metastasis modulate the migratory response to cell contact under spatial confinement. Biophys. J. 110:1886–1895, 2016.CrossRefGoogle Scholar
  28. 28.
    Mousavi, S. J., M. H. Doweidar, and M. Doblaré. 3D computational modelling of cell migration: A mechano-chemo-thermo-electrotaxis approach. J. Theor. Biol. Elsevier 329:64–73, 2013.CrossRefzbMATHGoogle Scholar
  29. 29.
    Ng, M. R., A. Besser, G. Danuser, and J. S. Brugge. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199:545–563, 2012.CrossRefGoogle Scholar
  30. 30.
    Oka, H., H. Shiozaki, K. Kobayashi, M. Inoue, H. Tahara, T. Kobayashi, Y. Takatsuka, N. Matsuyoshi, S. Hirano, M. Takeichi, and T. Mori. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 53:1696–1701, 1993.Google Scholar
  31. 31.
    Olivier, N., M. A. Luengo-oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire. Cell Lineage Reconstr. Early. 70, 2007.Google Scholar
  32. 32.
    Onder, T. T., P. B. Gupta, S. A. Mani, J. Yang, E. S. Lander, and R. A. Weinberg. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68:3645–3654, 2008.CrossRefGoogle Scholar
  33. 33.
    Progatzky, F., M. J. Dallman, and C. Lo Celso. From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3:1–14, 2013.CrossRefGoogle Scholar
  34. 34.
    Pu, J., C. D. McCaig, L. Cao, Z. Zhao, J. E. Segall, and M. Zhao. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J. Cell Sci. 120:3395–3403, 2007.CrossRefGoogle Scholar
  35. 35.
    Rodriguez, L. L., and I. C. Schneider. Directed cell migration in multi-cue environments. Integr. Biol. 5:1306–1323, 2013.CrossRefGoogle Scholar
  36. 36.
    Rompolas, P., E. R. Deschene, G. Zito, D. G. Gonzalez, I. Saotome, A. M. Haberman, and V. Greco. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487:496–499, 2012.CrossRefGoogle Scholar
  37. 37.
    Sandquist, J. C., K. I. Swenson, K. A. Demali, K. Burridge, and A. R. Means. Rho kinase differentially regulates phosphorylation of nonmuscle myosin II isoforms A and B during cell rounding. J. Biol. Chem. 281:35873–35883, 2006.CrossRefGoogle Scholar
  38. 38.
    Sbalzarini, I., and P. Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151:182–195, 2005.CrossRefGoogle Scholar
  39. 39.
    Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Liceiri, P. Tomancak, and A. Cardona. Fiji: an open source platform for biological image analysis. Nat. Methods 9:676–682, 2012.CrossRefGoogle Scholar
  40. 40.
    Schmalhofer, O., S. Brabletz, and T. Brabletz. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28:151–166, 2009.CrossRefGoogle Scholar
  41. 41.
    Sommers, C., E. Gelmann, C. L. Sommers, E. W. Thompson, R. Kemlen, E. P. Gelmann, S. W. Byers, and A. Torn. Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: Relationship to morphology and invasive capacities Uvomorulin Breast Cancer Cell Lines: Relationship and Invasive in Human to Morphology. Cell Growth Differ. 2:365–372, 1991.Google Scholar
  42. 42.
    Song, B., Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2:1479–1489, 2007.CrossRefGoogle Scholar
  43. 43.
    Tsai, H. F., C. W. Huang, H. F. Chang, J. J. W. Chen, C. H. Lee, and J. Y. Cheng. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation. PLoS ONE 8:1–20, 2013.Google Scholar
  44. 44.
    Van Roy, F., and G. Berx. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65:3756–3788, 2008.CrossRefGoogle Scholar
  45. 45.
    Veit, W., C. Held, R. Palmisano, and T. Wittenberg. Segmentation of HeLa cells in phase-contrast images with and without DAPI stained cell nuclei. Biomed. Technol. 57:519–522, 2012.Google Scholar
  46. 46.
    Wang, Y., Z. Zhang, H. Wang, and S. Bi. Segmentation of the clustered cells with optimized boundary detection in negative phase contrast images. PLoS ONE 10:e0130178, 2015.CrossRefGoogle Scholar
  47. 47.
    Witta, S. E., R. M. Gemmill, F. R. Hirsch, C. D. Coldren, K. Hedman, L. Ravdel, B. Helfrich, R. Dziadziuszko, D. C. Chan, M. Sugita, Z. Chan, A. Baron, W. Franklin, H. A. Drabkin, L. Girard, A. F. Gazdar, J. D. Minna, and P. A. Bunn. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 66:944–950, 2006.CrossRefGoogle Scholar
  48. 48.
    Wu, D., X. Ma, and F. Lin. DC electric fields direct breast cancer cell migration, induce EGFR polarization, and increase the intracellular level of calcium ions. Cell Biochem. Biophys. 67:1115–1125, 2013.CrossRefGoogle Scholar
  49. 49.
    Yu, Y., C. Feng, Y. Hong, J. Liu, S. Chen, K. M. Ng, K. Q. Luo, and B. Z. Tang. Cytophilic fluorescent bioprobes for long-term cell tracking. Adv. Mater. 23:3298–3302, 2011.CrossRefGoogle Scholar
  50. 50.
    Zhao, M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20:674–682, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Mark L. Lalli
    • 1
  • Brooke Wojeski
    • 1
  • Anand R. Asthagiri
    • 1
    • 2
    • 3
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of BioengineeringNortheastern UniversityBostonUSA
  3. 3.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations