Cellular and Molecular Bioengineering

, Volume 10, Issue 1, pp 3–15 | Cite as

A Microfluidic Model of Hemostasis Sensitive to Platelet Function and Coagulation

  • R. M. Schoeman
  • K. Rana
  • N. Danes
  • M. Lehmann
  • J. A. Di Paola
  • A. L. Fogelson
  • K. Leiderman
  • K. B. Neeves
Article

Abstract

Hemostasis is the process of sealing a vascular injury with a thrombus to arrest bleeding. The type of thrombus that forms depends on the nature of the injury and hemodynamics. There are many models of intravascular thrombus formation whereby blood is exposed to prothrombotic molecules on a solid substrate. However, there are few models of extravascular thrombus formation whereby blood escapes into the extravascular space through a hole in the vessel wall. Here, we describe a microfluidic model of hemostasis that includes vascular, vessel wall, and extravascular compartments. Type I collagen and tissue factor, which support platelet adhesion and initiate coagulation, respectively, were adsorbed to the wall of the injury channel and act synergistically to yield a stable thrombus that stops blood loss into the extravascular compartment in ~ 7.5 min. Inhibiting factor VIII to mimic hemophilia A results in an unstable thrombus that was unable to close the injury. Treatment with a P2Y12 antagonist to reduce platelet activation prolonged the closure time two-fold compared to controls. Taken together, these data demonstrate a hemostatic model that is sensitive to both coagulation and platelet function and can be used to study coagulopathies and platelet dysfunction that result in excessive blood loss.

keywords

Biorheology Biotransport Platelets Coagulation 

Supplementary material

12195_2016_469_MOESM1_ESM.avi (5.7 mb)
Supplementary Video 1. Perfusion of recalcified citrated whole blood on a BSA coated injury channel. Supplementary material 1 (AVI 5799 kb)
12195_2016_469_MOESM2_ESM.avi (6.9 mb)
Supplementary Video 2. Thrombus formation on collagen-TF surface using recalcified citrated whole blood. Supplementary material 2 (AVI 7095 kb)
12195_2016_469_MOESM3_ESM.avi (31 mb)
Supplementary Video 3. Thrombus formation on collagen-TF surface using recalcified citrated whole blood treated with an anti-FVIII antibody. Supplementary material 3 (AVI 31694 kb)
12195_2016_469_MOESM4_ESM.avi (7.8 mb)
Supplementary Video 4. Thrombus formation on collagen-TF surface using recalcified citrated whole blood treated with 2-MeSAMP. Supplementary material 4 (AVI 8022 kb)
12195_2016_469_MOESM5_ESM.pdf (1.5 mb)
Supplementary material 5 (PDF 1568 kb)

References

  1. 1.
    Ayachit, U. The ParaView Guide: A Parallel Visualization Application. New York: Kitware, Inc, 2015.Google Scholar
  2. 2.
    Berny, M. A., I. A. Patel, T. C. White-Adams, P. Simonson, A. Gruber, S. Rugonyi, and O. J. T. McCarty. Rational design of an ex vivo model of thrombosis. Cell. Mol. Bioeng. 3:187–189, 2010.CrossRefGoogle Scholar
  3. 3.
    Casa, L. D. C., and D. N. Ku. Geometric design of microfluidic chambers: platelet adhesion versus accumulation. Biomed Microdevices 16:115–126, 2014.CrossRefGoogle Scholar
  4. 4.
    Chang, P., D. L. Aronson, D. G. Borenstein, and C. M. Kessler. Coagulant proteins and thrombin generation in synovial fluid: a model for extravascular coagulation. Am. J. Hematol. 50:79–83, 1995.CrossRefGoogle Scholar
  5. 5.
    Colace, T. V., R. W. Muthard, and S. L. Diamond. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arterioscl Throm Vas 32:1466–1476, 2012.CrossRefGoogle Scholar
  6. 6.
    De Jong, A., and J. Eikenboom. Developments in the diagnostic procedures for von Willebrand disease. J. Thromb. Haemost. 14:449–460, 2016.CrossRefGoogle Scholar
  7. 7.
    de Witt, S. M., F. Swieringa, R. Cavill, M. M. E. Lamers, R. Van Kruchten, T. Mastenbroek, C. Baaten, S. Coort, N. Pugh, A. Schulz, I. Scharrer, K. Jurk, B. Zieger, K. J. Clemetson, R. W. Farndale, J. W. M. Heemskerk, and J. M. E. M. Cosemans. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat. Commun. 5:4257, 2014.Google Scholar
  8. 8.
    Drake, T. A., J. H. Morrissey, and T. S. Edgington. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134:1087, 1989.Google Scholar
  9. 9.
    Farndale, R. W., J. J. Sixma, M. J. Barnes, and P. G. de Groot. The role of collagen in thrombosis and hemostasis. J. Thromb. Haemost. 2:561–573, 2004.CrossRefGoogle Scholar
  10. 10.
    Fogelson, A. L., and K. B. Neeves. Fluid mechanics of blood clot formation. Ann. Rev. Fluid Mech. 47:377–403, 2015.CrossRefGoogle Scholar
  11. 11.
    Getz, T. M., R. Piatt, B. G. Petrich, D. Monroe, N. Mackman, and W. Bergmeier. Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition. J. Thromb. Haemost. 13:417–425, 2015.CrossRefGoogle Scholar
  12. 12.
    Geuzaine, C., and J. F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng 79:1309–1331, 2009.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Goldsmith, H. L., and V. T. Turitto. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55:415–435, 1986.Google Scholar
  14. 14.
    Guermond, J. L., P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput. Method Appl. Mech. Eng. 195:6011–6045, 2006.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jackson, S. The growing complexity of platelet aggregation. Blood 109:5087, 2007.CrossRefGoogle Scholar
  16. 16.
    Jen, C. J., and J. S. Lin. Direct observation of platelet adhesion to fibrinogen- and fibrin-coated surfaces. Am. J. Physiol. 261:H1457–H1463, 1991.Google Scholar
  17. 17.
    Koutsiaris, A. G., S. V. Tachmitzi, and N. Batis. Wall shear stress quantification in the human conjunctival pre-capillary arterioles in vivo. Microvasc. Res. 85:34–39, 2013.CrossRefGoogle Scholar
  18. 18.
    Lehmann, M., A. M. Wallbank, K. A. Dennis, A. R. Wufsus, K. M. Davis, K. Rana, and K. B. Neeves. On-chip recalcification of citrated whole blood using a microfluidic herringbone mixer. Biomicrofluidics 9:064106, 2015.CrossRefGoogle Scholar
  19. 19.
    Li, M., D. N. Ku, and C. R. Forest. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:1355, 2012.CrossRefGoogle Scholar
  20. 20.
    Logg, A., K.-A. Mardal, and G. N. Wells. Automated Solution of Differential Equations by the Finite Element Method. Berlin, Heidelberg: Springer, 2012.CrossRefMATHGoogle Scholar
  21. 21.
    Mann, K. G., M. E. Nesheim, W. R. Church, P. Haley, and S. Krishnaswamy. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 76:1–16, 1990.Google Scholar
  22. 22.
    Manon-Jensen, T., N. G. Kjeld, and M. A. Karsdal. Collagen-mediated hemostasis. J. Thromb. Haemost. 14:438–448, 2016.CrossRefGoogle Scholar
  23. 23.
    McCarty, O. J. T., D. Ku, M. Sugimoto, M. R. King, J. M. E. M. Cosemans, K. B. Neeves. The Subcommittee on Biorheology. Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH. J. Thromb. Haemost. 14:619–622, 2016.Google Scholar
  24. 24.
    Monroe, D. M., and M. Hoffman. Coagulation factor interaction with platelets. Thromb. Haemost. 88:179, 2002.Google Scholar
  25. 25.
    Muthard, R. W., and S. Diamond. Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient. Lab Chip 13:1883–1891, 2013.CrossRefGoogle Scholar
  26. 26.
    Neeves, K. B., A. A. Onasoga, and A. R. Wufsus. The use of microfluidics in hemostasis. Curr. Opin. Hematol. 20:417–423, 2013.CrossRefGoogle Scholar
  27. 27.
    Neeves, K. B., A. A. Onasoga, R. R. Hansen, J. J. Lilly, D. Venckunaite, M. B. Sumner, A. T. Irish, G. Brodsky, M. J. Manco-Johnson, and J. A. Di Paola. Sources of Variability in Platelet Accumulation on Type 1 Fibrillar Collagen in Microfluidic Flow Assays. PLoS One 8:e54680, 2013.CrossRefGoogle Scholar
  28. 28.
    Neeves, K. B., O. J. T. McCarty, A. J. Reininger, M. Sugimoto, M. R. King. Biorheology Subcommittee of the SSC of the ISTH. Flow-dependent thrombin and fibrin generation in vitro: opportunities for standardization: communication from SSC of the ISTH. J. Thromb. Haemost. 12:418–420, 2014.Google Scholar
  29. 29.
    Nichols, W. L., M. B. Hultin, A. H. James, M. J. Manco-Johnson, R. R. Montgomery, T. L. Ortel, M. E. Rick, J. E. Sadler, M. Weinstein, and B. P. Yawn. von Willebrand disease (VWD): evidence-based diagnosis and management guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 14:171–232, 2008.CrossRefGoogle Scholar
  30. 30.
    Oh, K. W., K. Lee, B. Ahn, and E. P. Furlani. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12:515, 2012.CrossRefGoogle Scholar
  31. 31.
    Okorie, U. M., W. S. Denney, M. S. Chatterjee, K. B. Neeves, and S. L. Diamond. Determination of surface tissue factor thresholds that trigger coagulation at venous and arterial shear rates: amplification of 100 fM circulating tissue factor requires flow. Blood 111:3507–3513, 2008.CrossRefGoogle Scholar
  32. 32.
    Onasoga-Jarvis, A. A., T. J. Puls, S. K. O’Brien, L. Kuang, H. J. Liang, and K. B. Neeves. Thrombin generation and fibrin formation under flow on biomimetic tissue factor-rich surfaces. J. Thromb. Haemost. 12:373–382, 2014.CrossRefGoogle Scholar
  33. 33.
    Pries, A. R., B. Reglin, and T. W. Secomb. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 46:725–731, 2005.CrossRefGoogle Scholar
  34. 34.
    Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263:H1770–H1778, 1992.Google Scholar
  35. 35.
    Rana, K., and K. B. Neeves. Blood flow and mass transfer regulation of coagulation. Blood Rev. 2016. doi:10.1016/j.blre.2016.04.004.Google Scholar
  36. 36.
    Reininger, A. J., I. Bernlochner, S. M. Penz, C. Ravanat, P. Smethurst, R. W. Farndale, C. Gachet, R. Brandl, and W. Siess. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J. Am. Coll. Cardiol. 55:1147–1158, 2010.CrossRefGoogle Scholar
  37. 37.
    Ruggeri, Z. M. Platelet adhesion under flow. Microcirculation 16:58–83, 2009.CrossRefGoogle Scholar
  38. 38.
    Savage, B., F. Almus-Jacobs, and Z. M. Ruggeri. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94:657–666, 1998.CrossRefGoogle Scholar
  39. 39.
    Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.CrossRefGoogle Scholar
  40. 40.
    Sylman, J. L., D. T. Artzer, K. Rana, and K. B. Neeves. A vascular injury model using focal heat-induced activation of endothelial cells. Integr. Biol. 7:801–814, 2015.CrossRefGoogle Scholar
  41. 41.
    Tovar-Lopez, F. J., G. Rosengarten, E. Westein, K. Khoshmanesh, S. P. Jackson, A. Mitchell, and W. S. Nesbitt. A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab Chip 10:291, 2010.CrossRefGoogle Scholar
  42. 42.
    Tsai, M., A. Kita, J. Leach, R. Rounsevell, J. N. Huang, J. Moake, R. E. Ware, D. A. Fletcher, and W. A. Lam. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J. Clin. Invest. 122:408–418, 2011.CrossRefGoogle Scholar
  43. 43.
    Turitto, V. T., H. J. Weiss, and H. R. Baumgartner. Platelet interaction with rabbit subendothelium in von Willebrand’s disease: altered thrombus formation distinct from defective platelet adhesion. J. Clin. Invest. 74:1730–1741, 1984.CrossRefGoogle Scholar
  44. 44.
    Valentino, L. A. Blood-induced joint disease: the pathophysiology of hemophilic arthropathy. J. Thromb. Haemost. 8:1895–1902, 2010.CrossRefGoogle Scholar
  45. 45.
    Valentino, L. A., N. Hakobyan, T. Kazarian, K. J. Jabbar, and A. A. Jabbar. Experimental haemophilic synovitis: rationale and development of a murine model of human factor VIII deficiency. Haemophilia 10:280–287, 2004.CrossRefGoogle Scholar
  46. 46.
    van der Meijden, P. E. J., I. C. A. Munnix, J. M. Auger, J. W. P. Govers-Riemslag, J. M. E. M. Cosemans, M. J. E. Kuijpers, H. M. Spronk, S. P. Watson, T. Renné, and J. W. M. Heemskerk. Dual role of collagen in factor XII-dependent thrombus formation. Blood 114:881–890, 2009.CrossRefGoogle Scholar
  47. 47.
    van Gestel, M. A., J. W. M. Heemskerk, D. W. Slaaf, V. V. T. Heijnen, S. O. Sage, R. S. Reneman, and M. G. A. Oude Egbrink. Real-time detection of activation patterns in individual platelets during thromboembolism in vivo: differences between thrombus growth and embolus formation. J. Vasc. Res. 39:534–543, 2002.Google Scholar
  48. 48.
    van Gestel, M. A., S. Reitsma, D. W. Slaaf, V. V. T. Heijnen, M. A. H. Feijge, T. Lindhout, M. A. M. J. van Zandvoort, M. Elg, R. S. Reneman, J. W. M. Heemskerk, and M. G. A. Oude Egbrink. Both ADP and thrombin regulate arteriolar thrombus stabilization and embolization, but are not involved in initial hemostasis as induced by micropuncture. Microcirculation 14:193–205, 2007.Google Scholar
  49. 49.
    Van Kruchten, R., J. M. E. M. Cosemans, and J. W. M. Heemskerk. Measurement of whole blood thrombus formation using parallel-plate flow chambers—a practical guide. Platelets 23:229–242, 2012.CrossRefGoogle Scholar
  50. 50.
    Versteeg, H. H., J. W. M. Heemskerk, M. Levi, and P. H. Reitsma. New fundamentals in hemostasis. Physiol Rev 93:327–358, 2013.CrossRefGoogle Scholar
  51. 51.
    Weisel, J. Fibrinogen and fibrin. Adv. Protein Chem. 70:248–299, 2005.Google Scholar
  52. 52.
    Westein, E., A. D. van der Meer, M. J. E. Kuijpers, J.-P. Frimat, A. van den Berg, and J. W. M. Heemskerk. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc. Natl. Acad. Sci. 110:1357–1362, 2013.CrossRefGoogle Scholar
  53. 53.
    Westrick, R. J., M. E. Winn, and D. T. Eitzman. Murine models of vascular thrombosis. Arterioscl. Throm. Vas. 27:2079–2093, 2007.CrossRefGoogle Scholar
  54. 54.
    Young, M. E., P. A. Carroad, and R. L. Bell. Estimation of diffusion coefficients of proteins. Biotechnol. Bioeng. 22:947–955, 1980.CrossRefGoogle Scholar
  55. 55.
    Zheng, Y., J. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. López, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. 109:9342–9347, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • R. M. Schoeman
    • 1
  • K. Rana
    • 1
  • N. Danes
    • 2
  • M. Lehmann
    • 1
  • J. A. Di Paola
    • 3
  • A. L. Fogelson
    • 4
  • K. Leiderman
    • 3
  • K. B. Neeves
    • 1
    • 3
  1. 1.Chemical and Biological Engineering DepartmentColorado School of MinesGoldenUSA
  2. 2.Applied Mathematics and Statistics DepartmentColorado School of MinesGoldenUSA
  3. 3.Department of PediatricsUniversity of Colorado DenverAuroraUSA
  4. 4.Departments of Mathematics and BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations