Co-Assembly Tags Based on Charge Complementarity (CATCH) for Installing Functional Protein Ligands into Supramolecular Biomaterials

Abstract

Installing folded proteins into biomaterials is gaining interest for imparting functional properties that often cannot be provided by unfolded peptides or small molecules, such as catalysis, antigen conformation, or molecular recognition. Although covalent grafting provides a simple means to immobilize proteins onto pre-formed biomaterials, amenable chemistries can alter protein bioactivity, are relatively non-specific, and can be difficult to reproduce. Covalent fusions of bioactive molecules and synthetic peptides that can self-assemble into nano-scale architectures are a promising alternative for creating functional supramolecular biomaterials with precise and reproducible composition. Here we created a pair of oppositely charged synthetic peptides, referred to as “CATCH” (Co-Assembly Tags based on CHarge complementarity), to install folded proteins into supramolecular biomaterials. CATCH peptides co-assemble into β-sheet nanofibers when combined, yet cannot assemble independently due to electrostatic repulsion. Electrostatically controlled assembly enabled high yield production of soluble CATCH-green fluorescent protein (CATCH(−)GFP) by E. coli. Binary mixtures of CATCH-GFP and its charge-complementary peptide self-assembled into fluorescent microparticles, whereas ternary mixtures of CATCH(−)GFP and both CATCH peptides self-assembled into fluorescent nanofibers and macroscopic hydrogels. The CATCH system is therefore likely to be broadly useful for creating functional supramolecular biomaterials with integrated folded protein components for various biomedical and biotechnological applications.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Baldwin, A. J., R. Bader, J. Christodoulou, C. E. MacPhee, C. M. Dobson, and P. D. Barker. Cytochrome display on amyloid fibrils. J. Am. Chem. Soc. 128(7):2162–2163, 2006.

    Article  Google Scholar 

  2. 2.

    Baxa, U., V. Speransky, A. C. Steven, and R. B. Wickner. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci USA. 99(8):5253–5260, 2002.

    Article  Google Scholar 

  3. 3.

    Black, M., A. Trent, Y. Kostenko, J. S. Lee, C. Olive, and M. Tirrell. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv. Mater. 24(28):3845–3849, 2012.

    Article  Google Scholar 

  4. 4.

    Bowerman, C. J., and B. L. Nilsson. Self-assembly of amphipathic beta-sheet peptides: insights and applications. Biopolymers. 98(3):169–184, 2012.

    Article  Google Scholar 

  5. 5.

    Chen, J., R. R. Pompano, F. W. Santiago, L. Maillat, R. Sciammas, T. Sun, H. Han, D. J. Topham, A. S. Chong, and J. H. Collier. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials. 34(34):8776–8785, 2013.

    Article  Google Scholar 

  6. 6.

    Chow, L. W., L. J. Wang, Kaufman DB, and Stupp SI. Self-assembling nanostructures to deliver angiogenic factors to pancreatic islets. Biomaterials. 31(24):6154–6161, 2010.

    Article  Google Scholar 

  7. 7.

    Collier, J. H., and Messersmith PB. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjugate Chem. 14(4):748–755, 2003.

    Article  Google Scholar 

  8. 8.

    Collier, J. H., J. S. Rudra, Gasiorowski JZ, and J. P. Jung. Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 39(9):3413–3424, 2010.

    Article  Google Scholar 

  9. 9.

    Davis, M. E., P. C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R. D. Kamm, A. J. Grodzinsky, P. Anversa, and R. T. Lee. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc. Natl Acad. Sci. U S A. 103(21):8155–8160, 2006.

    Article  Google Scholar 

  10. 10.

    Davis, M. E., J. P. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, and R. T. Lee. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 111(4):442–450, 2005.

    Article  Google Scholar 

  11. 11.

    Du, X., J. Zhou, J. Shi, and B. Xu. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem. Rev. 115(24):13165–13307, 2015.

    Article  Google Scholar 

  12. 12.

    Fettis, M. M., Y. Wei, A. Restuccia, J. Kurian, S. M. Wallet, and G. A. Hudalla. Microgels with tunable affinity-controlled protein release via desolvation of self-assembled peptide nanofibers. J. Mater. Chem. B 4:3054–3064, 2016.

    Article  Google Scholar 

  13. 13.

    Guler, M. O., S. Soukasene, J. F. Hulvat, and S. I. Stupp. Presentation and recognition of biotin on nanofibers formed by branched peptide amphiphiles. Nano Lett. 5(2):249–252, 2005.

    Article  Google Scholar 

  14. 14.

    Haines-Butterick, L. A., D. A. Salick, D. J. Pochan, and J. P. Schneider. In vitro assessment of the pro-inflammatory potential of beta-hairpin peptide hydrogels. Biomaterials. 29(31):4164–4169, 2008.

    Article  Google Scholar 

  15. 15.

    Holmes, T. C., S. de Lacalle, X. Su, G. Liu, A. Rich, and S. Zhang. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. U S A. 97(12):6728–6733, 2000.

    Article  Google Scholar 

  16. 16.

    Hortschansky, P., V. Schroeckh, T. Christopeit, G. Zandomeneghi, and M. Fandrich. The aggregation kinetics of Alzheimer’s beta-amyloid peptide is controlled by stochastic nucleation. Protein Sci. 14(7):1753–1759, 2005.

    Article  Google Scholar 

  17. 17.

    Hsieh, P. C., M. E. Davis, J. Gannon, C. MacGillivray, and R. T. Lee. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J. Clin. Invest. 116(1):237–248, 2006.

    Article  Google Scholar 

  18. 18.

    Hudalla, G. A., and J. H. Collier. Supramolecular artificial extracellular matrices. In: Mimicking the extracellular matrix: the intersection of matrix biology and biomaterials, edited by G. A. Hudalla, and W. L. Murphy. London: Royal Society of Chemistry, 2015.

    Google Scholar 

  19. 19.

    Hudalla, G. A., T. Sun, J. Z. Gasiorowski, H. Han, Y. F. Tian, A. S. Chong, and J. H. Collier. Gradated assembly of multiple proteins into supramolecular nanomaterials. Nat Mater. 13(8):829–836, 2014.

    Article  Google Scholar 

  20. 20.

    Jung, J. P., J. Z. Gasiorowski, and J. H. Collier. Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers. 94(1):49–59, 2010.

    Article  Google Scholar 

  21. 21.

    Jung, J. P., J. V. Moyano, and J. H. Collier. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr. Biol. (Camb). 3(3):185–196, 2011.

    Article  Google Scholar 

  22. 22.

    Jung, J. P., A. K. Nagaraj, E. K. Fox, J. S. Rudra, J. M. Devgun, and J. H. Collier. Co-assembling peptides as defined matrices for endothelial cells. Biomaterials. 30(12):2400–2410, 2009.

    Article  Google Scholar 

  23. 23.

    Khan, S., S. Sur, P. Y. Dankers, R. M. da Silva, J. Boekhoven, T. A. Poor, and S. I. Stupp. Post-assembly functionalization of supramolecular nanostructures with bioactive peptides and fluorescent proteins by native chemical ligation. Bioconjug Chem. 25(4):707–717, 2014.

    Article  Google Scholar 

  24. 24.

    Kim, W., Y. Kim, J. Min, D. J. Kim, Y. T. Chang, and M. H. Hecht. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. ACS Chem. Biol. 1(7):461–469, 2006.

    Article  Google Scholar 

  25. 25.

    Kyle, S., S. H. Felton, M. J. McPherson, A. Aggeli, and E. Ingham. Rational molecular design of complementary self-assembling peptide hydrogels. Adv. Healthc. Mater. 1(5):640–645, 2012.

    Article  Google Scholar 

  26. 26.

    Lee, S. S., E. L. Hsu, M. Mendoza, J. Ghodasra, M. S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R. M. Riaz, J. D. Nicolas, D. Nelson, S. Z. Hashmi, S. R. Kaltz, J. S. Earhart, B. R. Merk, J. S. McKee, S. F. Bairstow, R. N. Shah, W. K. Hsu, and S. I. Stupp. Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv. Healthc. Mater. 4(1):131–141, 2015.

    Article  Google Scholar 

  27. 27.

    Lee, S. S., B. J. Huang, S. R. Kaltz, S. Sur, C. J. Newcomb, S. R. Stock, R. N. Shah, and S. I. Stupp. Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials. 34(2):452–459, 2013.

    Article  Google Scholar 

  28. 28.

    Leng, Y., H. P. Wei, Z. P. Zhang, Y. F. Zhou, J. Y. Deng, Z. Q. Cui, D. Men, X. Y. You, Z. N. Yu, M. Luo, and X. E. Zhang. Integration of a fluorescent molecular biosensor into self-assembled protein nanowires: a large sensitivity enhancement. Angew. Chem. Int. Edit. 49(40):7243–7246, 2010.

    Article  Google Scholar 

  29. 29.

    Mahmoud, Z. N., S. B. Gunnoo, A. R. Thomson, J. M. Fletcher, and D. N. Woolfson. Bioorthogonal dual functionalization of self-assembling peptide fibers. Biomaterials. 32(15):3712–3720, 2011.

    Article  Google Scholar 

  30. 30.

    Matson, J. B., R. H. Zha, and S. I. Stupp. Peptide self-assembly for crafting functional biological materials. Curr. Opin. Solid State Mater. Sci. 15(6):225–235, 2011.

    Article  Google Scholar 

  31. 31.

    Matsumura, S., S. Uemura, and H. Mihara. Construction of biotinylated peptide nanotubes for arranging proteins. Mol. Biosyst. 1(2):146–148, 2005.

    Article  Google Scholar 

  32. 32.

    Mehrban, N., E. Abelardo, A. Wasmuth, K. L. Hudson, L. M. Mullen, A. R. Thomson, M. A. Birchall, and D. N. Woolfson. Assessing cellular response to functionalized alpha-helical peptide hydrogels. Adv. Healthc. Mater. 3(9):1387–1391, 2014.

    Article  Google Scholar 

  33. 33.

    Men, D., Y. C. Guo, Z. P. Zhang, H. P. Wei, Y. F. Zhou, Z. Q. Cui, X. S. Liang, K. Li, Y. Leng, X. Y. You, and X. E. Zhang. Seeding-induced self-assembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano Lett. 9(6):2246–2250, 2009.

    Article  Google Scholar 

  34. 34.

    Mendes, A. C., E. T. Baran, R. L. Reis, and H. S. Azevedo. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(6):582–612, 2013.

    Article  Google Scholar 

  35. 35.

    Miyachi, A., T. Takahashi, S. Matsumura, and H. Mihara. Peptide nanofibers modified with a protein by using designed anchor molecules bearing hydrophobic and functional moieties. Chemistry. 16(22):6644–6650, 2010.

    Article  Google Scholar 

  36. 36.

    Pedelacq, J. D., S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24(1):79–88, 2006.

    Article  Google Scholar 

  37. 37.

    Pompano, R. R., J. Chen, E. A. Verbus, H. Han, A. Fridman, T. McNeely, J. H. Collier, and A. S. Chong. Titrating T-cell epitopes within self-assembled vaccines optimizes CD4 + helper T cell and antibody outputs. Adv. Healthc. Mater. 3(11):1898–1908, 2014.

    Article  Google Scholar 

  38. 38.

    Reches, M., and E. Gazit. Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions. J. Nanosci. Nanotechnol. 7(7):2239–2245, 2007.

    Article  Google Scholar 

  39. 39.

    Restuccia, A., Y. F. Tian, J. H. Collier, and G. A. Hudalla. Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity. Cell Mol. Bioeng. 8(3):471–487, 2015.

    Article  Google Scholar 

  40. 40.

    Rudra, J. S., T. Sun, K. C. Bird, M. D. Daniels, J. Z. Gasiorowski, A. S. Chong, and J. H. Collier. Modulating adaptive immune responses to peptide self-assemblies. ACS Nano. 6(2):1557–1564, 2012.

    Article  Google Scholar 

  41. 41.

    Rudra, J. S., Y. F. Tian, J. P. Jung, and J. H. Collier. A self-assembling peptide acting as an immune adjuvant. Proc. Natl Acad. Sci. U S A. 107(2):622–627, 2010.

    Article  Google Scholar 

  42. 42.

    Sangiambut, S., K. Channon, N. M. Thomson, S. Sato, T. Tsuge, Y. Doi, and E. Sivaniah. A robust route to enzymatically functional, hierarchically self-assembled peptide frameworks. Adv. Mater. 25(19):2661–2665, 2013.

    Article  Google Scholar 

  43. 43.

    Sawada, T., and H. Mihara. Dense surface functionalization using peptides that recognize differences in organized structures of self-assembling nanomaterials. Mol. Biosyst. 8(4):1264–1274, 2012.

    Article  Google Scholar 

  44. 44.

    Sawada, T., T. Takahashi, and H. Mihara. Affinity-based screening of peptides recognizing assembly states of self-assembling peptide nanomaterials. J. Am. Chem. Soc. 131(40):14434–14441, 2009.

    Article  Google Scholar 

  45. 45.

    Stendahl, J. C., L. J. Wang, L. W. Chow, D. B. Kaufman, and S. I. Stupp. Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. Transplantation. 86(3):478–481, 2008.

    Article  Google Scholar 

  46. 46.

    Tian, Y. F., J. M. Devgun, and J. H. Collier. Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7(13):6005–6011, 2011.

    Article  Google Scholar 

  47. 47.

    Vassar, P. S., and C. F. Culling. Fluorescent stains, with special reference to amyloid and connective tissues. Arch. Pathol. 68:487–498, 1959.

    Google Scholar 

  48. 48.

    Webber, M. J., E. A. Appel, E. W. Meijer, and R. Langer. Supramolecular biomaterials. Nat. Mater. 15(1):13–26, 2016.

    Article  Google Scholar 

  49. 49.

    Whitesides, G. M., and M. Boncheva. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. U S A. 99(8):4769–4774, 2002.

    Article  Google Scholar 

  50. 50.

    Wu, W., L. Xing, B. Zhou, and Z. Lin. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli. Microb. Cell Fact. 10:9, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by start-up funds from the University of Florida Office of the Provost, the Herbert Wertheim College of Engineering, and the J. Crayton Pruitt Family Department of Biomedical Engineering. Anthony D. Sorrentino was supported by a fellowship from the University of Florida University Scholars Program.

Author contributions

D.T.S designed and conducted experiments, analyzed data, and wrote the paper. A.R. assisted with TEM. A.D.S. assisted with SEC. K.R.K. assisted with peptide synthesis and purification. S.J.H. assisted with CD, analyzed the results, and edited the paper. G.A.H. directed the work, designed experiments, analyzed results, and wrote the paper.

Conflict of interest

The authors, Dillon T. Seroski, Antonietta Restuccia, Anthony D. Sorrentino, Kevin R. Knox, Stephen J. Hagen, and Gregory A. Hudalla, declare no conflicts of interest.

Ethical statement

No human studies or animal studies were carried out by the authors for this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Hudalla.

Additional information

Gregory A. Hudalla is an Assistant Professor in the J. Crayton Pruitt Family Department of Biomedical Engineering in the Wertheim College of Engineering at the University of Florida. He received his B.S. in Chemical Engineering from the Illinois Institute of Technology, and received his M.S. and Ph.D. in Biomedical Engineering from the University of Wisconsin, under the guidance of Dr. William L. Murphy. Prior to joining the University of Florida, Dr. Hudalla was a postdoctoral scholar at the University of Chicago and Northwestern University under the guidance of Dr. Joel H. Collier and Dr. Milan Mrksich. Research in the Hudalla lab creates functional biomaterials for therapeutic or diagnostic applications via “self-assembly”, the spontaneous organization of molecules into supramolecular architectures. A primary research emphasis is developing synthetic peptide “fusion tags” to organize bioactive molecules, such as carbohydrates and proteins, into functional supramolecular materials. Dr. Hudalla is the recipient of a 2015 NSF Career award in Biomaterials and is supported by research grants from the NIH.

figurea

This article is part of the 2016 Young Innovators Issue.

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 737 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seroski, D.T., Restuccia, A., Sorrentino, A.D. et al. Co-Assembly Tags Based on Charge Complementarity (CATCH) for Installing Functional Protein Ligands into Supramolecular Biomaterials. Cel. Mol. Bioeng. 9, 335–350 (2016). https://doi.org/10.1007/s12195-016-0459-2

Download citation

Keywords

  • Biomaterials
  • Nanofiber
  • Self-assembly
  • Fusion protein
  • Hydrogel