Cellular and Molecular Bioengineering

, Volume 9, Issue 3, pp 315–324 | Cite as

Oncogene Knockdown via Active Loading of Small RNAs into Extracellular Vesicles by Sonication

  • Tek N. Lamichhane
  • Anjana Jeyaram
  • Divya B. Patel
  • Babita Parajuli
  • Natalie K. Livingston
  • Navein Arumugasaamy
  • John S. Schardt
  • Steven M. Jay


Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as promising drug delivery vehicles for small RNAs (siRNA and miRNA) due to their natural role in intercellular RNA transport. However, the application of EVs for therapeutic RNA delivery may be limited by loading approaches that can induce cargo aggregation or degradation. Here, we report the use of sonication as a means to actively load functional small RNAs into EVs. Conditions under which EVs could be loaded with small RNAs with minimal detectable aggregation were identified, and EVs loaded with therapeutic siRNA via sonication were observed to be taken up by recipient cells and capable of target mRNA knockdown leading to reduced protein expression. This system was ultimately applied to reduce expression of HER2, an oncogenic receptor tyrosine kinase that critically mediates breast cancer development and progression, and could be extended to other therapeutic targets. These results define important parameters informing the application of sonication as a small RNA loading method for EVs and demonstrate the potential utility of this approach for versatile cancer therapy.


Exosomes siRNA delivery microRNA HER2 Cancer nanoparticle Nanobiotechnology Biotherapeutic Biopharmaceutical 



This work was supported by NIH R00 Grant HL112905, by an ORAU Ralph E. Powe Junior Faculty Enhancement Award, and by two University of Maryland Tier 1 seed Grants (all to SMJ).

Author Contributions

TNL, AJ, DBP, BP, NKL, NA and JSS performed the research and analyzed data. TNL, AJ, DBP and SMJ contributed to conception and design of experiments and wrote the manuscript. All authors reviewed, edited and approved of the final manuscript.

Conflict of Interest

Authors Tek N. Lamichhane, Anjana Jeyaram, Divya B. Patel, Babita Parajuli, Natalie K. Livingston, Navein Arumugasaamy, John S. Schardt and Steven M. Jay declare that they have no conflicts of interest.

Ethics and Informed Consent

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.


  1. 1.
    Alvarez-Erviti, L., Y. Seow, H. Yin, C. Betts, S. Lakhal, and M. J. Wood. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–345, 2011.CrossRefGoogle Scholar
  2. 2.
    Andaloussi, E. L., I. Mager, X. O. Breakefield, and M. J. Wood. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:347–357, 2013.CrossRefGoogle Scholar
  3. 3.
    Arteaga, C. L., M. X. Sliwkowski, C. K. Osborne, E. A. Perez, F. Puglisi, and L. Gianni. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat. Rev. Clin. Oncol. 9:16–32, 2012.CrossRefGoogle Scholar
  4. 4.
    Baselga, J., and S. M. Swain. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer. 9:463–475, 2009.CrossRefGoogle Scholar
  5. 5.
    Blenkiron, C., and E. A. Miska. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum. Mol. Genet. 16(Spec No 1):R106–R113, 2007.CrossRefGoogle Scholar
  6. 6.
    Bumcrot, D., M. Manoharan, V. Koteliansky, and D. W. Sah. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2:711–719, 2006.CrossRefGoogle Scholar
  7. 7.
    Choudhury, A., J. Charo, S. K. Parapuram, R. C. Hunt, D. M. Hunt, B. Seliger, and R. Kiessling. Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int. J. Cancer. 108:71–77, 2004.CrossRefGoogle Scholar
  8. 8.
    Coelho, T., D. Adams, A. Silva, P. Lozeron, P. N. Hawkins, T. Mant, J. Perez, J. Chiesa, S. Warrington, E. Tranter, M. Munisamy, R. Falzone, J. Harrop, J. Cehelsky, B. R. Bettencourt, M. Geissler, J. S. Butler, A. Sehgal, R. E. Meyers, Q. Chen, T. Borland, R. M. Hutabarat, V. A. Clausen, R. Alvarez, K. Fitzgerald, C. Gamba-Vitalo, S. V. Nochur, A. K. Vaishnaw, D. W. Sah, J. A. Gollob, and O. B. Suhr. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369:819–829, 2013.CrossRefGoogle Scholar
  9. 9.
    Cooper, J. M., P. B. Wiklander, J. Z. Nordin, R. Al-Shawi, M. J. Wood, M. Vithlani, A. H. Schapira, J. P. Simons, S. El-Andaloussi, and L. Alvarez-Erviti. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 29:1476–1485, 2014.CrossRefGoogle Scholar
  10. 10.
    De Jong, W. H., and P. J. Borm. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3:133–149, 2008.CrossRefGoogle Scholar
  11. 11.
    El-Andaloussi, S., Y. Lee, S. Lakhal-Littleton, J. Li, Y. Seow, C. Gardiner, L. Alvarez-Erviti, I. L. Sargent, and M. J. Wood. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat. Protoc. 7:2112–2126, 2012.CrossRefGoogle Scholar
  12. 12.
    Esmaeilzadeh-Gharehdaghi, E., A. Amani, M. R. Khoshayand, M. Banan, E. Esmaeilzadeh-Gharehdaghi, M. A. Amini, and M. A. Faramarzi. Chitosan nanoparticles for siRNA delivery: optimization of processing/formulation parameters. Nucleic Acid Ther. 24:420–427, 2014.CrossRefGoogle Scholar
  13. 13.
    Faltus, T., J. Yuan, B. Zimmer, A. Kramer, S. Loibl, M. Kaufmann, and K. Strebhardt. Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6:786–795, 2004.CrossRefGoogle Scholar
  14. 14.
    Farooqi, A. A., Z. U. Rehman, and J. Muntane. Antisense therapeutics in oncology: current status. Onco Targets Ther. 7:2035–2042, 2014.CrossRefGoogle Scholar
  15. 15.
    Gavrilov, K., and W. M. Saltzman. Therapeutic siRNA: principles, challenges, and strategies. Yale J. Biol. Med. 85:187–200, 2012.Google Scholar
  16. 16.
    Gyorgy, B., M. E. Hung, X. O. Breakefield, and J. N. Leonard. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu. Rev. Pharmacol. Toxicol. 55:439–464, 2015.CrossRefGoogle Scholar
  17. 17.
    Haney, M. J., N. L. Klyachko, Y. Zhao, R. Gupta, E. G. Plotnikova, Z. He, T. Patel, A. Piroyan, M. Sokolsky, A. V. Kabanov, and E. V. Batrakova. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control Release 207:18–30, 2015.CrossRefGoogle Scholar
  18. 18.
    Kim, M. S., M. J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N. L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S. D. Hingtgen, A. V. Kabanov, and E. V. Batrakova. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine 12(3):655–664, 2016.Google Scholar
  19. 19.
    Kooijmans, S. A., S. Stremersch, K. Braeckmans, S. C. de Smedt, A. Hendrix, M. J. Wood, R. M. Schiffelers, K. Raemdonck, and P. Vader. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control Release 172:229–238, 2013.CrossRefGoogle Scholar
  20. 20.
    Kundu, A. K., P. K. Chandra, S. Hazari, Y. V. Pramar, S. Dash, and T. K. Mandal. Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur. J. Pharm. Biopharm. 80:257–267, 2012.CrossRefGoogle Scholar
  21. 21.
    Lamichhane, T. N., R. S. Raiker, and S. M. Jay. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol. Pharm. 12:3650–3657, 2015.CrossRefGoogle Scholar
  22. 22.
    Lamichhane, T. N., S. Sokic, J. S. Schardt, R. S. Raiker, J. W. Lin, and S. M. Jay. Emerging roles for extracellular vesicles in tissue engineering and regenerative medicine. Tissue Eng. Part B Rev. 21:45–54, 2015.CrossRefGoogle Scholar
  23. 23.
    McClorey, G., and M. J. Wood. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol. 24:52–58, 2015.CrossRefGoogle Scholar
  24. 24.
    Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487, 2007.CrossRefGoogle Scholar
  25. 25.
    Munoz, J. L., S. A. Bliss, S. J. Greco, S. H. Ramkissoon, K. L. Ligon, and P. Rameshwar. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2:e126, 2013.CrossRefGoogle Scholar
  26. 26.
    Ohno, S., M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa, N. Matsuyama, K. Fujita, T. Mizutani, T. Ohgi, T. Ochiya, N. Gotoh, and M. Kuroda. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21:185–191, 2013.CrossRefGoogle Scholar
  27. 27.
    Peer, D., and J. Lieberman. Special delivery: targeted therapy with small RNAs. Gene Ther. 18:1127–1133, 2011.CrossRefGoogle Scholar
  28. 28.
    Smyth, T., M. Kullberg, N. Malik, P. Smith-Jones, M. W. Graner, and T. J. Anchordoquy. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control Release. 199:145–155, 2015.CrossRefGoogle Scholar
  29. 29.
    Tan, W. B., S. Jiang, and Y. Zhang. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571, 2007.CrossRefGoogle Scholar
  30. 30.
    Thiel, K. W., L. I. Hernandez, J. P. Dassie, W. H. Thiel, X. Liu, K. R. Stockdale, A. M. Rothman, F. J. Hernandez, J. O. McNamara, 2nd, and P. H. Giangrande. Delivery of chemo-sensitizing siRNAs to HER2 + -breast cancer cells using RNA aptamers. Nucleic Acids Res. 40:6319–6337, 2012.CrossRefGoogle Scholar
  31. 31.
    Valadi, H., K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee, and J. O. Lotvall. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–659, 2007.CrossRefGoogle Scholar
  32. 32.
    Whitehead, K. A., R. Langer, and D. G. Anderson. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8:129–138, 2009.CrossRefGoogle Scholar
  33. 33.
    Wichmann, H., A. Guttler, M. Bache, H. Taubert, S. Rot, J. Kessler, A. W. Eckert, M. Kappler, and D. Vordermark. Targeting of EGFR and HER2 with therapeutic antibodies and siRNA: a comparative study in glioblastoma cells. Strahlenther. Onkol. 191:180–191, 2015.CrossRefGoogle Scholar
  34. 34.
    Wiklander, O. P., J. Z. Nordin, A. O’Loughlin, Y. Gustafsson, G. Corso, I. Mager, P. Vader, Y. Lee, H. Sork, Y. Seow, N. Heldring, L. Alvarez-Erviti, C. E. Smith, K. Le Blanc, P. Macchiarini, P. Jungebluth, M. J. Wood, and S. E. Andaloussi. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles. 4:26316, 2015.CrossRefGoogle Scholar
  35. 35.
    Wittrup, A., and J. Lieberman. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16:543–552, 2015.CrossRefGoogle Scholar
  36. 36.
    Zhao, D., Y. Sui, and X. Zheng. miR-331-3p inhibits proliferation and promotes apoptosis by targeting HER2 through the PI3K/Akt and ERK1/2 pathways in colorectal cancer. Oncol. Rep. 35:1075–1082, 2016.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Tek N. Lamichhane
    • 1
  • Anjana Jeyaram
    • 1
  • Divya B. Patel
    • 1
  • Babita Parajuli
    • 1
  • Natalie K. Livingston
    • 1
  • Navein Arumugasaamy
    • 1
  • John S. Schardt
    • 1
  • Steven M. Jay
    • 1
    • 2
    • 3
  1. 1.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA
  2. 2.Program in Oncology, Marlene and Stewart Greenebaum Cancer CenterUniversity of MarylandCollege ParkUSA
  3. 3.Program in Molecular and Cell BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations