Cellular and Molecular Bioengineering

, Volume 9, Issue 2, pp 217–226 | Cite as

On the Nuclear Pore Complex and Its Roles in Nucleo-Cytoskeletal Coupling and Mechanobiology

  • M. Soheilypour
  • M. Peyro
  • Z. Jahed
  • M. R. K. Mofrad
Article

Abstract

The nuclear pore complex (NPC) is primarily recognized for its function as the gateway for nucleocytoplasmic traffic, regulating biochemical exchange between the cytoplasm and the nucleoplasm. On the other hand, the LINC complex, comprised of SUN-domain and KASH-domain proteins, is typically credited as the main physical bridge across the nuclear envelope. However, recent evidence suggests that the NPC is also directly engaged with the cytoskeletal elements and the nucleoskeleton, and as such provides a direct physical association between the nucleus and the cytoskeleton. Moreover, by controlling the transport of inner nuclear membrane proteins, including components of the LINC complex, the NPC plays additional roles in physically connecting the cytoskeleton and the nucleus. This review examines the NPC’s direct and indirect contributions to nucleo-cytoskeletal coupling and mechanobiology.

Keywords

Nuclear pore complex SUN KASH LINC Mechanotransduction Nuclear envelope 

References

  1. 1.
    Alber, F., S. Dokudovskaya, L. M. Veenhoff, W. Zhang, J. Kipper, D. Devos, A. Suprapto, O. Karni-Schmidt, R. Williams, B. T. Chait, A. Sali, and M. P. Rout. The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701, 2007.CrossRefGoogle Scholar
  2. 2.
    Al-Haboubi, T., D. K. Shumaker, J. Köser, M. Wehnert, and B. Fahrenkrog. Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins. Nucleus 2(5):500–509, 2011.CrossRefGoogle Scholar
  3. 3.
    Ando, D., M. Colvin, M. Rexach, and A. Gopinathan. Physical motif clustering within intrinsically disordered nucleoporin sequences reveals universal functional features. PLoS One 8(9):e73831, 2013.CrossRefGoogle Scholar
  4. 4.
    Antonin, W., C. Franz, U. Haselmann, C. Antony, and I. W. Mattaj. The integral membrane nucleoporin pom121 functionally links nuclear pore complex assembly and nuclear envelope formation. Mol. Cell 17(1):83–92, 2005.CrossRefGoogle Scholar
  5. 5.
    Belmont, A. S. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 123(6):1671–1685, 1993.CrossRefGoogle Scholar
  6. 6.
    Blobel, G. Three-dimensional organization of chromatids by nuclear envelope-associated structures. Cold Spring Harb. Symp. Quant. Biol. 75:545–554, 2010.CrossRefGoogle Scholar
  7. 7.
    Braunagel, S. C., S. T. Williamson, Q. Ding, X. Wu, and M. D. Summers. Early sorting of inner nuclear membrane proteins is conserved. Proc. Natl. Acad. Sci. U. S. A. 104(22):9307–9312, 2007.CrossRefGoogle Scholar
  8. 8.
    Capelson, M., Y. Liang, R. Schulte, W. Mair, U. Wagner, and M. W. Hetzer. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383, 2010.CrossRefGoogle Scholar
  9. 9.
    Casolari, J. M., C. R. Brown, S. Komili, J. West, H. Hieronymus, and P. A. Silver. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4):427–439, 2004.CrossRefGoogle Scholar
  10. 10.
    Chatel, G., and B. Fahrenkrog. Dynamics and diverse functions of nuclear pore complex proteins. Nucleus 3(2):162–171, 2012.CrossRefGoogle Scholar
  11. 11.
    Chug, H., S. Trakhanov, B. B. Hülsmann, T. Pleiner, and D. Görlich. Crystal structure of the metazoan Nup62·Nup58·Nup54 nucleoporin complex. Science 350(6256):106–110, 2015.CrossRefGoogle Scholar
  12. 12.
    Crisp, M., Q. Liu, K. Roux, J. B. Rattner, C. Shanahan, B. Burke, P. D. Stahl, and D. Hodzic. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172(1):41–53, 2006.CrossRefGoogle Scholar
  13. 13.
    Dahl, K. N., S. M. Kahn, K. L. Wilson, and D. E. Discher. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117(Pt 20):4779–4786, 2004.CrossRefGoogle Scholar
  14. 14.
    Daigle, N. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 154(1):71–84, 2001.CrossRefGoogle Scholar
  15. 15.
    De Souza, C. P., S. B. Hashmi, T. Nayak, B. Oakley, and S. A. Osmani. Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol. Biol. Cell 20(8):2146–2159, 2009.CrossRefGoogle Scholar
  16. 16.
    Denning, D. P., S. S. Patel, V. Uversky, A. L. Fink, and M. Rexach. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. U. S. A. 100(5):2450–2455, 2003.CrossRefGoogle Scholar
  17. 17.
    Devos, D., S. Dokudovskaya, R. Williams, F. Alber, N. Eswar, B. T. Chait, M. P. Rout, and A. Sali. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. U. S. A. 103(7):2172–2177, 2006.CrossRefGoogle Scholar
  18. 18.
    Dilworth, D. J., A. J. Tackett, R. S. Rogers, E. C. Yi, R. H. Christmas, J. J. Smith, A. F. Siegel, B. T. Chait, R. W. Wozniak, and J. D. Aitchison. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J. Cell Biol. 171(6):955–965, 2005.CrossRefGoogle Scholar
  19. 19.
    Doucet, C. M., and M. W. Hetzer. Nuclear pore biogenesis into an intact nuclear envelope. Chromosoma 119(5):469–477, 2010.CrossRefGoogle Scholar
  20. 20.
    Doucet, C. M., J. A. Talamas, and M. W. Hetzer. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141(6):1030–1041, 2010.CrossRefGoogle Scholar
  21. 21.
    Drummond, S. P., and K. L. Wilson. Interference with the cytoplasmic tail of gp210 disrupts ‘close apposition’ of nuclear membranes and blocks nuclear pore dilation. J. Cell Biol. 158(1):53–62, 2002.CrossRefGoogle Scholar
  22. 22.
    Eisenhardt, N., J. Redolfi, and W. Antonin. Interaction of Nup53 with Ndc1 and Nup155 is required for nuclear pore complex assembly. J. Cell Sci. 127(Pt 4):908–921, 2014.CrossRefGoogle Scholar
  23. 23.
    Fiserova, J., and M. W. Goldberg. Relationships at the nuclear envelope: lamins and nuclear pore complexes in animals and plants. Biochem. Soc. Trans. 38(3):829–831, 2010.CrossRefGoogle Scholar
  24. 24.
    Fiserova, J., and M. W. Goldberg. Relationships at the nuclear envelope: lamins and nuclear pore complexes in animals and plants. Biochem. Soc. Trans. 38(3):829–831, 2010.CrossRefGoogle Scholar
  25. 25.
    Franks, T. M., and M. W. Hetzer. The role of Nup98 in transcription regulation in healthy and diseased cells. Trends Cell Biol. 23(3):112–117, 2013.CrossRefGoogle Scholar
  26. 26.
    Franz, C., P. Askjaer, W. Antonin, C. L. Iglesias, U. Haselmann, M. Schelder, A. de Marco, M. Wilm, C. Antony, and I. W. Mattaj. Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J. 24(20):3519–3531, 2005.CrossRefGoogle Scholar
  27. 27.
    Frey, S., R. P. Richter, and D. Görlich. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314(5800):815–817, 2006.CrossRefGoogle Scholar
  28. 28.
    Gay, S., and M. Foiani. Nuclear envelope and chromatin, lock and key of genome integrity. Int. Rev. Cell Mol. Biol. 317:267–330, 2015.CrossRefGoogle Scholar
  29. 29.
    Gerace, L., Y. Ottaviano, and C. Kondor-Koch. Identification of a major polypeptide of the nuclear pore complex. J. Cell Biol. 95(3):826–837, 1982.CrossRefGoogle Scholar
  30. 30.
    Griffis, E. R., N. Altan, J. Lippincott-Schwartz, and M. A. Powers. Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol. Biol. Cell 13(4):1282–1297, 2002.CrossRefGoogle Scholar
  31. 31.
    Gruenbaum, Y., R. D. Goldman, R. Meyuhas, E. Mills, A. Margalit, A. Fridkin, Y. Dayani, M. Prokocimer, and A. Enosh. The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 226:1–62, 2003.CrossRefGoogle Scholar
  32. 32.
    Guo, Y., and Y. Zheng. Lamins position the nuclear pores and centrosomes by modulating dynein. Mol. Biol. Cell, pp. mbc.E15–07–0482, 2015.Google Scholar
  33. 33.
    Hallberg, E., R. W. Wozniak, and G. Blobel. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J. Cell Biol. 122(3):513–521, 1993.CrossRefGoogle Scholar
  34. 34.
    Handa, N., M. Kukimoto-Niino, R. Akasaka, S. Kishishita, K. Murayama, T. Terada, M. Inoue, T. Kigawa, S. Kose, N. Imamoto, A. Tanaka, Y. Hayashizaki, M. Shirouzu, and S. Yokoyama. The crystal structure of mouse Nup35 reveals atypical RNP motifs and novel homodimerization of the RRM domain. J. Mol. Biol. 363(1):114–124, 2006.CrossRefGoogle Scholar
  35. 35.
    Harada, T., J. Swift, J. Irianto, J.-W. Shin, K. R. Spinler, A. Athirasala, R. Diegmiller, P. C. D. P. Dingal, I. L. Ivanovska, and D. E. Discher. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204(5):669–682, 2014.CrossRefGoogle Scholar
  36. 36.
    Harel, A., A. V. Orjalo, T. Vincent, A. Lachish-Zalait, S. Vasu, S. Shah, E. Zimmerman, M. Elbaum, and D. J. Forbes. Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol. Cell 11(4):853–864, 2003.CrossRefGoogle Scholar
  37. 37.
    Hawryluk-Gara, L. A., M. Platani, R. Santarella, R. W. Wozniak, and I. W. Mattaj. Nup53 is required for nuclear envelope and nuclear pore complex assembly. Mol. Biol. Cell 19(4):1753–1762, 2008.CrossRefGoogle Scholar
  38. 38.
    Hawryluk-Gara, L. A., E. K. Shibuya, and R. W. Wozniak. Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol. Biol. Cell 16(5):2382–2394, 2005.CrossRefGoogle Scholar
  39. 39.
    Ho, C. Y., and J. Lammerding. Lamins at a glance. J. Cell Sci. 125(Pt 9):2087–2093, 2012.CrossRefGoogle Scholar
  40. 40.
    Hoelz, A., E. W. Debler, and G. Blobel. The structure of the nuclear pore complex. Annu. Rev. Biochem. 80:613–643, 2011.CrossRefGoogle Scholar
  41. 41.
    Horn, H. F., D. I. Kim, G. D. Wright, E. S. M. Wong, C. L. Stewart, B. Burke, and K. J. Roux. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J. Cell Biol. 202(7):1023–1039, 2013.CrossRefGoogle Scholar
  42. 42.
    Hou, C., and V. G. Corces. Nups take leave of the nuclear envelope to regulate transcription. Cell 140(3):306–308, 2010.CrossRefGoogle Scholar
  43. 43.
    Hutchison, C. J. Lamins: building blocks or regulators of gene expression? Nat. Rev. Mol. Cell Biol. 3(11):848–858, 2002.CrossRefGoogle Scholar
  44. 44.
    Jamali, T., Y. Jamali, M. Mehrbod, and M. R. K. Mofrad. Nuclear Pore Complex. Biochemistry and Biophysics of Nucleocytoplasmic Transport in Health and Disease (1st ed.)., Vol. 287. San Diego: Elsevier Inc, 2011.Google Scholar
  45. 45.
    Joseph, J., and M. Dasso. The nucleoporin Nup358 associates with and regulates interphase microtubules. FEBS Lett. 582(2):190–196, 2008.CrossRefGoogle Scholar
  46. 46.
    Kalverda, B., H. Pickersgill, V. V. Shloma, and M. Fornerod. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371, 2010.CrossRefGoogle Scholar
  47. 47.
    King, M. C., C. P. Lusk, and G. Blobel. Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442(7106):1003–1007, 2006.CrossRefGoogle Scholar
  48. 48.
    Koh, J., and G. Blobel. Allosteric regulation in gating the central channel of the nuclear pore complex. Cell 161(6):1361–1373, 2015.CrossRefGoogle Scholar
  49. 49.
    Köhler, A., and E. Hurt. Gene regulation by nucleoporins and links to cancer. Mol. Cell 38(1):6–15, 2010.CrossRefGoogle Scholar
  50. 50.
    Krull, S., J. Dörries, B. Boysen, S. Reidenbach, L. Magnius, H. Norder, J. Thyberg, and V. C. Cordes. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29(10):1659–1673, 2010.CrossRefGoogle Scholar
  51. 51.
    Labokha, A. A., S. Gradmann, S. Frey, B. B. Hülsmann, H. Urlaub, M. Baldus, and D. Görlich. Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J. 32(2):204–218, 2013.CrossRefGoogle Scholar
  52. 52.
    Li, P., and A. A. Noegel. Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export. Nucleic Acids Res. 43(20):9874–9888, 2015.Google Scholar
  53. 53.
    Liang, Y., T. M. Franks, M. C. Marchetto, F. H. Gage, and M. W. Hetzer. Dynamic association of NUP98 with the human genome. PLoS Genet. 9(2):e1003308, 2013.CrossRefGoogle Scholar
  54. 54.
    Lim, R. Y. H., B. Fahrenkrog, J. Köser, K. Schwarz-Herion, J. Deng, and U. Aebi. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318(5850):640–643, 2007.CrossRefGoogle Scholar
  55. 55.
    Lin, D. H., T. Stuwe, S. Schilbach, E. J. Rundlet, T. Perriches, G. Mobbs, Y. Fan, K. Thierbach, F. M. Huber, L. N. Collins, A. M. Davenport, Y. E. Jeon, and A. Hoelz. Architecture of the symmetric core of the nuclear pore. Science. 352(6283):aaf1015, 2016.CrossRefGoogle Scholar
  56. 56.
    Liu, Q., N. Pante, T. Misteli, M. Elsagga, M. Crisp, D. Hodzic, B. Burke, and K. J. Roux. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178(5):785–798, 2007.CrossRefGoogle Scholar
  57. 57.
    Lombardi, M. L., D. E. Jaalouk, C. M. Shanahan, B. Burke, K. J. Roux, and J. Lammerding. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286(30):26743–26753, 2011.CrossRefGoogle Scholar
  58. 58.
    Lussi, Y. C., D. K. Shumaker, T. Shimi, and B. Fahrenkrog. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1. Nucleus 1(1):71–84, 2010.CrossRefGoogle Scholar
  59. 59.
    Luthra, R., S. C. Kerr, M. T. Harreman, L. H. Apponi, M. B. Fasken, S. Ramineni, S. Chaurasia, S. R. Valentini, and A. H. Corbett. Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J. Biol. Chem. 282(5):3042–3049, 2007.CrossRefGoogle Scholar
  60. 60.
    Ma, Y., S. Cai, Q. Lv, Q. Jiang, Q. Zhang, Sodmergen, Z. Zhai, and C. Zhang. Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin beta. J. Cell Sci. 120(Pt 3):520–530, 2007.CrossRefGoogle Scholar
  61. 61.
    Mansfeld, J., S. Güttinger, L. A. Hawryluk-Gara, N. Panté, M. Mall, V. Galy, U. Haselmann, P. Mühlhäusser, R. W. Wozniak, I. W. Mattaj, U. Kutay, and W. Antonin. The conserved transmembrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol. Cell 22(1):93–103, 2006.CrossRefGoogle Scholar
  62. 62.
    McMahon, H. T., and J. L. Gallop. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438(7068):590–596, 2005.CrossRefGoogle Scholar
  63. 63.
    Mészáros, N., J. Cibulka, M. J. Mendiburo, A. Romanauska, M. Schneider, and A. Köhler. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33(3):285–298, 2015.CrossRefGoogle Scholar
  64. 64.
    Misteli, T. Beyond the sequence: cellular organization of genome function. Cell 128(4):787–800, 2007.CrossRefGoogle Scholar
  65. 65.
    Mofrad, M. R. K., and R. D. Kamm. Cellular Mechanotransduction: Diverse Perspectives from Molecules to Tissues. Cambridge: Cambridge University Press, 2014.Google Scholar
  66. 66.
    Moussavi-Baygi, R., Y. Jamali, R. Karimi, and M. R. K. Mofrad. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput. Biol. 7(6):e1002049, 2011.MathSciNetCrossRefGoogle Scholar
  67. 67.
    Murawala, P., M. M. Tripathi, P. Vyas, A. Salunke, and J. Joseph. Nup358 interacts with APC and plays a role in cell polarization. J. Cell Sci. 122(Pt 17):3113–3122, 2009.CrossRefGoogle Scholar
  68. 68.
    Oka, M., M. Asally, Y. Yasuda, Y. Ogawa, T. Tachibana, and Y. Yoneda. The mobile FG nucleoporin Nup98 is a cofactor for Crm1-dependent protein export. Mol. Biol. Cell 21(11):1885–1896, 2010.CrossRefGoogle Scholar
  69. 69.
    Onischenko, E., L. H. Stanton, A. S. Madrid, T. Kieselbach, and K. Weis. Role of the Ndc1 interaction network in yeast nuclear pore complex assembly and maintenance. J. Cell Biol. 185(3):475–491, 2009.CrossRefGoogle Scholar
  70. 70.
    Orjalo, A. V., A. Arnaoutov, Z. Shen, Y. Boyarchuk, S. G. Zeitlin, B. Fontoura, S. Briggs, M. Dasso, and D. J. Forbes. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17(9):3806–3818, 2006.CrossRefGoogle Scholar
  71. 71.
    Patel, S. S., and M. F. Rexach. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol. Cell. Proteomics 7(1):121–131, 2008.CrossRefGoogle Scholar
  72. 72.
    Peyro, M., M. Soheilypour, A. Ghavami, and M. R. K. Mofrad. Nucleoporin’s like charge regions are major regulators of FG coverage and dynamics inside the nuclear pore complex. PLoS One 10(12):e0143745, 2015.CrossRefGoogle Scholar
  73. 73.
    Peyro, M., M. Soheilypour, B. L. Lee, and M. R. K. Mofrad. Evolutionarily conserved sequence features regulate the formation of the FG network at the center of the nuclear pore complex. Sci. Rep. 5:15795, 2015.CrossRefGoogle Scholar
  74. 74.
    Ribbeck, K., and D. Görlich. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20(6):1320–1330, 2001.CrossRefGoogle Scholar
  75. 75.
    Rodriguez-Bravo, V., J. Maciejowski, J. Corona, H. K. Buch, P. Collin, M. T. Kanemaki, J. V. Shah, and P. V. Jallepalli. Nuclear pores protect genome integrity by assembling a premitotic and Mad1-dependent anaphase inhibitor. Cell 156(5):1017–1031, 2014.CrossRefGoogle Scholar
  76. 76.
    Rout, M. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13(12):622–628, 2003.CrossRefGoogle Scholar
  77. 77.
    Roux, K. J., M. L. Crisp, Q. Liu, D. Kim, S. Kozlov, C. L. Stewart, and B. Burke. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl. Acad. Sci. U. S. A. 106(7):2194–2199, 2009.CrossRefGoogle Scholar
  78. 78.
    Salina, D., P. Enarson, J. B. Rattner, and B. Burke. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J. Cell Biol. 162(6):991–1001, 2003.CrossRefGoogle Scholar
  79. 79.
    Schermelleh, L., P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336, 2008.CrossRefGoogle Scholar
  80. 80.
    Schmid, M., G. Arib, C. Laemmli, J. Nishikawa, T. Durussel, and U. K. Laemmli. Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol. Cell 21(3):379–391, 2006.CrossRefGoogle Scholar
  81. 81.
    Schmidt, H. B., and D. Görlich. Transport selectivity of nuclear pores, phase separation, and membraneless organelles. Trends Biochem. Sci. 41(1):46–61, 2016.CrossRefGoogle Scholar
  82. 82.
    Schneider, R., and R. Grosschedl. Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21(23):3027–3043, 2007.CrossRefGoogle Scholar
  83. 83.
    Sood, V., and J. H. Brickner. Nuclear pore interactions with the genome. Curr. Opin. Genet. Dev. 25:43–49, 2014.CrossRefGoogle Scholar
  84. 84.
    Sosa, B. A., U. Kutay, and T. U. Schwartz. Structural insights into LINC complexes. Curr. Opin. Struct. Biol. 23(2):285–291, 2013.CrossRefGoogle Scholar
  85. 85.
    Sosa, B. A., A. Rothballer, U. Kutay, and T. U. Schwartz. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149(5):1035–1047, 2012.CrossRefGoogle Scholar
  86. 86.
    Splinter, D., M. E. Tanenbaum, A. Lindqvist, D. Jaarsma, A. Flotho, K. L. Yu, I. Grigoriev, D. Engelsma, E. D. Haasdijk, N. Keijzer, J. Demmers, M. Fornerod, F. Melchior, C. C. Hoogenraad, R. H. Medema, and A. Akhmanova. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8(4):e1000350, 2010.CrossRefGoogle Scholar
  87. 87.
    Strawn, L. A., T. Shen, N. Shulga, D. S. Goldfarb, and S. R. Wente. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6(3):197–206, 2004.CrossRefGoogle Scholar
  88. 88.
    Stuwe, T., C. J. Bley, K. Thierbach, S. Petrovic, S. Schilbach, D. J. Mayo, T. Perriches, E. J. Rundlet, Y. E. Jeon, L. N. Collins, F. M. Huber, D. H. Lin, M. Paduch, A. Koide, V. Lu, J. Fischer, E. Hurt, S. Koide, A. A. Kossiakoff, and A. Hoelz. Architecture of the fungal nuclear pore inner ring complex. Science 350(6256):56–64, 2015.CrossRefGoogle Scholar
  89. 89.
    Talamas, J. A., and M. W. Hetzer. POM121 and Sun1 play a role in early steps of interphase NPC assembly. J. Cell Biol. 194(1):27–37, 2011.CrossRefGoogle Scholar
  90. 90.
    Tapley, E. C., N. Ly, and D. A. Starr. Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane. Mol. Biol. Cell 22(10):1739–1752, 2011.CrossRefGoogle Scholar
  91. 91.
    Turgay, Y., R. Ungricht, A. Rothballer, A. Kiss, G. Csucs, P. Horvath, and U. Kutay. A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane. EMBO J. 29(14):2262–2275, 2010.CrossRefGoogle Scholar
  92. 92.
    Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J. M. Rothberg. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627, 2000.CrossRefGoogle Scholar
  93. 93.
    Vollmer, B., M. Lorenz, D. Moreno-Andrés, M. Bodenhöfer, P. De Magistris, S. A. Astrinidis, A. Schooley, M. Flötenmeyer, S. Leptihn, and W. Antonin. Nup153 Recruits the Nup107-160 Complex to the Inner Nuclear Membrane for Interphasic Nuclear Pore Complex Assembly. Dev. Cell 33(6):717–728, 2015.CrossRefGoogle Scholar
  94. 94.
    Vollmer, B., A. Schooley, R. Sachdev, N. Eisenhardt, A. M. Schneider, C. Sieverding, J. Madlung, U. Gerken, B. Macek, and W. Antonin. Dimerization and direct membrane interaction of Nup53 contribute to nuclear pore complex assembly. EMBO J. 31(20):4072–4084, 2012.CrossRefGoogle Scholar
  95. 95.
    Walther, T. C., A. Alves, H. Pickersgill, I. Loïodice, M. Hetzer, V. Galy, B. B. Hülsmann, T. Köcher, M. Wilm, T. Allen, I. W. Mattaj, and V. Doye. The conserved Nup107-160 complex Is critical for nuclear pore complex assembly. Cell 113(2):195–206, 2003.CrossRefGoogle Scholar
  96. 96.
    Wilhelmsen, K. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171(5):799–810, 2005.CrossRefGoogle Scholar
  97. 97.
    Wolf, C., and M. R. K. Mofrad. On the octagonal structure of the nuclear pore complex: insights from coarse-grained models. Biophys. J. 95(4):2073–2085, 2008.CrossRefGoogle Scholar
  98. 98.
    Wozniak, R. W. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J. Cell Biol. 108(6):2083–2092, 1989.CrossRefGoogle Scholar
  99. 99.
    Yamada, J., J. L. Phillips, S. Patel, G. Goldfien, A. Calestagne-Morelli, H. Huang, R. Reza, J. Acheson, V. V. Krishnan, S. Newsam, A. Gopinathan, E. Y. Lau, M. E. Colvin, V. N. Uversky, and M. F. Rexach. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics 9(10):2205–2224, 2010.CrossRefGoogle Scholar
  100. 100.
    Zhou, L., and N. Panté. The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Lett. 584(14):3013–3020, 2010.CrossRefGoogle Scholar
  101. 101.
    Zuleger, N., D. A. Kelly, A. C. Richardson, A. R. W. Kerr, M. W. Goldberg, A. B. Goryachev, and E. C. Schirmer. System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J. Cell Biol. 193(1):109–123, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • M. Soheilypour
    • 1
  • M. Peyro
    • 1
  • Z. Jahed
    • 1
  • M. R. K. Mofrad
    • 1
  1. 1.Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations