Skip to main content
Log in

Nuclear Lamins in Cancer

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Dysmorphic nuclei are commonly seen in cancers and provide strong motivation for studying in various cancer contexts the main structural proteins of nuclei, the lamins. Past studies have separately demonstrated the importance of microenvironment mechanics to cancer progression, which is extremely interesting because the lamina was recently shown to be mechanosensitive. Here, we review current knowledge relating cancer progression to lamina biophysics and biology. Lamin levels can modulate cancer cell migration in 3D and thereby impact tumor growth, and lamins can also protect or not a cancer cell’s genome. In addition, lamins can influence transcriptional regulators (RAR, SRF, YAP/TAZ) as well as chromosome conformation in lamina associated domains. Further investigation of the roles for lamins in cancer and even DNA damage may lead to new therapies or at least to a clearer understanding of lamins as bio-markers in cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Agrelo, R., F. Setien, J. Espada, M. J. Artiga, M. Rodriguez, A. Perez-Rosado, A. Sanchez-Aguilera, M. F. Fraga, M. A. Piris, and M. Esteller. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol. 23(17):3940–3947, 2005.

    Article  Google Scholar 

  2. Akhtar, W., J. de Jong, A. V. Pindyurin, L. Pagie, W. Meuleman, J. de Ridder, A. Berns, L. F. A. Wessels, M. van Lohuizen, and B. van Steensel. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154(4):914–927, 2013.

    Article  Google Scholar 

  3. Alfonso, P., M. Canamero, F. Fernandez-Carbonie, A. Nunez, and J. I. Casal. Proteome analysis of membrane fractions in colorectal carcinomas by using 2D-DIGE saturation labeling. J. Proteome Res. 7(10):4247–4255, 2008.

    Article  Google Scholar 

  4. Amendola, M., and B. van Steensel. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep. 16(5):610–617, 2015.

    Article  Google Scholar 

  5. Aragona, M., T. Panciera, A. Manfrin, S. Giulitti, F. Michielin, N. Elvassore, S. Dupont, and S. Piccolo. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059, 2013.

    Article  Google Scholar 

  6. Baker, B. M., B. Trappmann, W. Y. Wang, M. S. Sakar, I. L. Kim, V. B. Shenoy, J. A. Burdick, and C. S. Chen. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14(12):1262–1268, 2015.

    Article  Google Scholar 

  7. Barzilai, N., D. M. Huffman, R. H. Muzumdar, and A. Bartke. The critical role of metabolic pathways in aging. Diabetes 61(6):1315–1322, 2012.

    Article  Google Scholar 

  8. Belt, E. J., R. J. Fijneman, E. G. van den Berg, H. Bril, P. M. Delis-van Diemen, M. Tijssen, E. S. van Essen, E. S. de Lange-de Klerk, J. A. Belien, H. B. Stockmann, S. Meijer, and G. A. Meijer. Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence. Eur. J. Cancer 47(12):1837–1845, 2011.

    Article  Google Scholar 

  9. Bengtsson, S., M. Krogh, C. A. Szigyarto, M. Uhlen, K. Schedvins, C. Silfversward, S. Linder, G. Auer, A. Alaiya, and P. James. Large-scale proteomics analysis of human ovarian cancer for biomarkers. J. Proteome Res. 6(4):1440–1450, 2007.

    Article  Google Scholar 

  10. Berman, B. P., D. J. Weisenberger, J. F. Aman, T. Hinoue, Z. Ramjan, Y. Liu, H. Noushmehr, C. P. Lange, C. M. van Dijk, R. A. Tollenaar, D. Van Den Berg, and P. W. Laird. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat. Genet. 44(1):40–46, 2012.

    Article  Google Scholar 

  11. Bissell, M. J., H. G. Hall, and G. Parry. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99:31–68, 1982.

    Article  Google Scholar 

  12. Boggiano, J. C., and R. G. Fehon. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev. Cell 22(4):695–702, 2012.

    Article  Google Scholar 

  13. Boudreau, N., C. Myers, and M. J. Bissell. From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol. 5(1):1–4, 1995.

    Article  Google Scholar 

  14. Broers, J. L., E. A. Peeters, H. J. Kuijpers, J. Endert, C. V. Bouten, C. W. Oomens, F. P. Baaijens, and F. C. Ramaekers. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13(21):2567–2580, 2004.

    Article  Google Scholar 

  15. Broers, J. L., Y. Raymond, M. K. Rot, H. Kuijpers, S. S. Wagenaar, and F. C. Ramaekers. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 143(1):211–220, 1993.

    Google Scholar 

  16. Buxboim, A., J. Swift, J. Irianto, K. R. Spinler, P. C. Dingal, A. Athirasala, Y. R. Kao, S. Cho, T. Harada, J. W. Shin, and D. E. Discher. Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24(16):1909–1917, 2014.

    Article  Google Scholar 

  17. Capo-chichi, C. D., K. Q. Cai, F. Simpkins, P. Ganjei-Azar, A. K. Godwin, and X. X. Xu. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med. 9:28, 2011.

    Article  Google Scholar 

  18. Chanda, B., A. Ditadi, N. N. Iscove, and G. Keller. Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell 155(1):215–227, 2013.

    Article  Google Scholar 

  19. Chen, Q., N. Zhang, R. S. Gray, H. Li, A. J. Ewald, C. A. Zahnow, and D. Pan. A temporal requirement for Hippo signaling in mammary gland differentiation, growth, and tumorigenesis. Genes Dev. 28(5):432–437, 2014.

    Article  Google Scholar 

  20. Chin, L., Y. Xia, D. E. Discher, and P. A. Janmey. Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11:77–84, 2016.

    Article  Google Scholar 

  21. Cho, K. W., H. J. Kwon, J. O. Shin, J. M. Lee, S. W. Cho, C. Tickle, and H. S. Jung. Retinoic acid signaling and the initiation of mammary gland development. Dev. Biol. 365(1):259–266, 2012.

    Article  Google Scholar 

  22. Constantinescu, D., H. L. Gray, P. J. Sammak, G. P. Schatten, and A. B. Csoka. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24(1):177–185, 2006.

    Article  Google Scholar 

  23. Coradeghini, R., P. Barboro, A. Rubagotti, F. Boccardo, S. Parodi, G. Carmignani, C. D’Arrigo, E. Patrone, and C. Balbi. Differential expression of nuclear lamins in normal and cancerous prostate tissues. Oncol. Rep. 15(3):609–613, 2006.

    Google Scholar 

  24. Dahl, K. N., P. Scaffidi, M. F. Islam, A. G. Yodh, K. L. Wilson, and T. Misteli. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103(27):10271–10276, 2006.

    Article  Google Scholar 

  25. de la Rosa, J., J. M. Freije, R. Cabanillas, F. G. Osorio, M. F. Fraga, M. S. Fernandez-Garcia, R. Rad, V. Fanjul, A. P. Ugalde, Q. Liang, H. M. Prosser, A. Bradley, J. Cadinanos, and C. Lopez-Otin. Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat. Commun. 4:2268, 2013.

    Google Scholar 

  26. de Las Heras, J. I., D. G. Batrakou, and E. C. Schirmer. Cancer biology and the nuclear envelope: a convoluted relationship. Semin. Cancer Biol. 23(2):125–137, 2013.

    Article  Google Scholar 

  27. Dechat, T., S. A. Adam, P. Taimen, T. Shimi, and R. D. Goldman. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2(20826548):a000547, 2010.

    Google Scholar 

  28. Denais, C., and J. Lammerding. Nuclear Mechanics in Cancer. In: Cancer biology and the nuclear envelope, advances in experimental medicine and biology, edited by E. C. Schirmer, and J. I. D. L. Heras. New York: Springer, 2014, pp. 435–470.

    Chapter  Google Scholar 

  29. Dingal, P. C., A. M. Bradshaw, S. Cho, M. Raab, A. Buxboim, J. Swift, and D. E. Discher. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat. Mater. 14:951–960, 2015.

    Article  Google Scholar 

  30. Du, J.-Y., M.-C. Chen, T.-C. Hsu, J.-H. Wang, L. Brackenbury, T.-H. Lin, Y.-Y. Wu, Z. Yang, C. H. Streuli, and Y.-J. Lee. The RhoA-Rok-myosin II pathway is involved in extracellular matrix-mediated regulation of prolactin signaling in mammary epithelial cells. J. Cell. Physiol. 227(4):1553–1560, 2012.

    Article  Google Scholar 

  31. Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183, 2011.

    Article  Google Scholar 

  32. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  Google Scholar 

  33. Hammerick, K. E., Z. Huang, N. Sun, M. T. Lam, F. B. Prinz, J. C. Wu, G. W. Commons, and M. T. Longaker. Elastic properties of induced pluripotent stem cells. Tissue Eng. Part A 17(3–4):495–502, 2011.

    Article  Google Scholar 

  34. Harada, T., J. Swift, J. Irianto, J.-W. Shin, K. R. Spinler, A. Athirasala, R. Diegmiller, P. C. D. P. Dingal, I. L. Ivanovska, and D. E. Discher. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204(5):669–682, 2014.

    Article  Google Scholar 

  35. Henderson, J. T., G. Shannon, I. V. Alexander, and P. N. Corey. Direct measurement of intranuclear strain distributions and RNA synthesis in single cells embedded within native tissue. Biophys. J. 105(10):2252–2261, 2013.

    Article  Google Scholar 

  36. Herrmann, H., S. V. Strelkov, P. Burkhard, and U. Aebi. Intermediate filaments: primary determinants of cell architecture and plasticity. J. Clin. Invest. 119(7):1772–1783, 2009.

    Article  Google Scholar 

  37. Ho, C. Y., D. E. Jaalouk, M. K. Vartiainen, and J. Lammerding. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497(7450):507–511, 2013.

    Article  Google Scholar 

  38. Ho, C. Y., and J. Lammerding. Lamins at a glance. J. Cell Sci. 125(9):2087–2093, 2012.

    Article  Google Scholar 

  39. Irianto, J., C. R. Pfeifer, Y. Xia, A. Athirasala, I. L. Ivanovska, R. E. Greenberg, and D. E. Discher. Constricted cell migration causes nuclear lamina damage, DNA breaks, and squeeze-out of repair factors. bioRxiv. 2015

  40. Iyer, K. V., S. Pulford, A. Mogilner, and G. V. Shivashankar. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103(7):1416–1428, 2012.

    Article  Google Scholar 

  41. Kashiyama, K., Y. Nakazawa, D. T. Pilz, C. Guo, M. Shimada, K. Sasaki, H. Fawcett, J. F. Wing, S. O. Lewin, L. Carr, T. S. Li, K. Yoshiura, A. Utani, A. Hirano, S. Yamashita, D. Greenblatt, T. Nardo, M. Stefanini, D. McGibbon, R. Sarkany, H. Fassihi, Y. Takahashi, Y. Nagayama, N. Mitsutake, A. R. Lehmann, and T. Ogi. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 92(5):807–819, 2013.

    Article  Google Scholar 

  42. Kim, Y., A. A. Sharov, K. McDole, M. Cheng, H. Hao, C. M. Fan, N. Gaiano, M. S. Ko, and Y. Zheng. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334(6063):1706–1710, 2011.

    Article  Google Scholar 

  43. Kress, C., M. Ballester, E. Devinoy, and M. Rijnkels. Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell. J Mammary Gland Biol. Neoplasia. 15(1):73–83, 2010.

    Article  Google Scholar 

  44. Kubben, N., M. Adriaens, W. Meuleman, J. W. Voncken, B. van Steensel, and T. Misteli. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma 121(5):447–464, 2012.

    Article  Google Scholar 

  45. Le Beyec, J., R. Xu, S.-Y. Lee, C. M. Nelson, A. Rizki, J. Alcaraz, and M. J. Bissell. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp. Cell Res. 313(14):3066–3075, 2007.

    Article  Google Scholar 

  46. Li, L., Y. Du, X. Kong, Z. Li, Z. Jia, J. Cui, J. Gao, G. Wang, and K. Xie. Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer. Clin. Cancer Res. 19(17):4651–4661, 2013.

    Article  Google Scholar 

  47. Lund, E., A. R. Oldenburg, E. Delbarre, C. T. Freberg, I. Duband-Goulet, R. Eskeland, B. Buendia, and P. Collas. Lamin A/C-promoter interactions specify chromatin state–dependent transcription outcomes. Genome Res. 23(10):1580–1589, 2013.

    Article  Google Scholar 

  48. Malhas, A., C. F. Lee, R. Sanders, N. J. Saunders, and D. J. Vaux. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176(5):593–603, 2007.

    Article  Google Scholar 

  49. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. 94(3):849–854, 1997.

    Article  Google Scholar 

  50. Matsumoto, A., M. Hieda, Y. Yokoyama, Y. Nishioka, K. Yoshidome, M. Tsujimoto, and N. Matsuura. Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med. 4(10):1547–1557, 2015.

    Article  Google Scholar 

  51. Mazumder, A., and G. V. Shivashankar. Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7(Suppl 3):S321–S330, 2010.

    Article  Google Scholar 

  52. McKee, C. T., V. K. Raghunathan, P. F. Nealey, P. Russell, and C. J. Murphy. Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophys. J. 101(9):2139–2146, 2011.

    Article  Google Scholar 

  53. Medjkane, S., C. Perez-Sanchez, C. Gaggioli, E. Sahai, and R. Treisman. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat. Cell Biol. 11(3):257–268, 2009.

    Article  Google Scholar 

  54. Mohaghegh, P., J. K. Karow, R. M. Brosh, Jr, V. A. Bohr, and I. D. Hickson. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29(13):2843–2849, 2001.

    Article  Google Scholar 

  55. Moro, L., L. Dolce, S. Cabodi, E. Bergatto, E. B. Erba, M. Smeriglio, E. Turco, S. F. Retta, M. G. Giuffrida, M. Venturino, J. Godovac-Zimmermann, A. Conti, E. Schaefer, L. Beguinot, C. Tacchetti, P. Gaggini, L. Silengo, G. Tarone, and P. Defilippi. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J. Biol. Chem. 277(11):9405–9414, 2002.

    Article  Google Scholar 

  56. Moss, S. F., V. Krivosheyev, A. de Souza, K. Chin, H. P. Gaetz, N. Chaudhary, H. J. Worman, and P. R. Holt. Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45(5):723–729, 1999.

    Article  Google Scholar 

  57. Musich, P. R., and Y. Zou. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging 1(1):28–37, 2009.

    Article  Google Scholar 

  58. Nagayama, K., Y. Yahiro, and T. Matsumoto. Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585(24):3992–3997, 2011.

    Article  Google Scholar 

  59. Osmanagic-Myers, S., T. Dechat, and R. Foisner. Lamins at the crossroads of mechanosignaling. Genes Dev. 29(3):225–237, 2015.

    Article  Google Scholar 

  60. Pajerowski, J. D., K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. 104(40):15619–15624, 2007.

    Article  Google Scholar 

  61. Pelissier, F. A., J. C. Garbe, B. Ananthanarayanan, M. Miyano, C. Lin, T. Jokela, S. Kumar, M. R. Stampfer, J. B. Lorens, and M. A. LaBarge. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep. 7(6):1926–1939, 2014.

    Article  Google Scholar 

  62. Porazinski, S., H. Wang, Y. Asaoka, M. Behrndt, T. Miyamoto, H. Morita, S. Hata, T. Sasaki, S. F. Krens, Y. Osada, S. Asaka, A. Momoi, S. Linton, J. B. Miesfeld, B. A. Link, T. Senga, A. Castillo-Morales, A. O. Urrutia, N. Shimizu, H. Nagase, S. Matsuura, S. Bagby, H. Kondoh, H. Nishina, C. P. Heisenberg, and M. Furutani-Seiki. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature 521(7551):217–221, 2015.

    Article  Google Scholar 

  63. Rao, S. S., M. H. Huntley, N. C. Durand, E. K. Stamenova, I. D. Bochkov, J. T. Robinson, A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680, 2014.

    Article  Google Scholar 

  64. Rowat, A. C., D. E. Jaalouk, M. Zwerger, W. L. Ung, I. A. Eydelnant, D. E. Olins, A. L. Olins, H. Herrmann, D. A. Weitz, and J. Lammerding. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288(12):8610–8618, 2013.

    Article  Google Scholar 

  65. Schramek, D., A. Sendoel, J. P. Segal, S. Beronja, E. Heller, D. Oristian, B. Reva, and E. Fuchs. Direct in vivo RNAi screen unveils myosin IIa as a tumor suppressor of squamous cell carcinomas. Science 343(6168):309–313, 2014.

    Article  Google Scholar 

  66. Shimi, T., K. Pfleghaar, S. Kojima, C. G. Pack, I. Solovei, A. E. Goldman, S. A. Adam, D. K. Shumaker, M. Kinjo, T. Cremer, and R. D. Goldman. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22(24):3409–3421, 2008.

    Article  Google Scholar 

  67. Shin, J. W., K. R. Spinler, J. Swift, J. A. Chasis, N. Mohandas, and D. E. Discher. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc. Natl. Acad. Sci. USA 110(47):18892–18897, 2013.

    Article  Google Scholar 

  68. Simon, D. N., M. S. Zastrow, and K. L. Wilson. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1(3):264–272, 2010.

    Article  Google Scholar 

  69. Skibinski, A., J. L. Breindel, A. Prat, P. Galván, E. Smith, A. Rolfs, P. B. Gupta, J. LaBaer, and C. Kuperwasser. The hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment. Cell Rep. 6:1059–1072, 2014.

    Article  Google Scholar 

  70. Skvortsov, S., G. Schafer, T. Stasyk, C. Fuchsberger, G. K. Bonn, G. Bartsch, H. Klocker, and L. A. Huber. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies lamin A as a discriminatory biomarker. J. Proteome Res. 10(1):259–268, 2011.

    Article  Google Scholar 

  71. Solovei, I., A. S. Wang, K. Thanisch, C. S. Schmidt, S. Krebs, M. Zwerger, T. V. Cohen, D. Devys, R. Foisner, L. Peichl, H. Herrmann, H. Blum, D. Engelkamp, C. L. Stewart, H. Leonhardt, and B. Joffe. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598, 2013.

    Article  Google Scholar 

  72. Spencer, V. A., S. Costes, J. L. Inman, R. Xu, J. Chen, M. J. Hendzel, and M. J. Bissell. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124(Pt 1):123–132, 2011.

    Article  Google Scholar 

  73. Spencer, V. A., S. Costes, J. L. Inman, R. Xu, J. Chen, M. J. Hendzel, and M. J. Bissell. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124(1):123–132, 2011.

    Article  Google Scholar 

  74. Spinler, K. R., J. W. Shin, M. P. Lambert, and D. E. Discher. Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. Blood 125(3):525–533, 2015.

    Article  Google Scholar 

  75. Steinhardt, A. A., M. F. Gayyed, A. P. Klein, J. Dong, A. Maitra, D. Pan, E. A. Montgomery, and R. A. Anders. Expression of Yes-associated protein in common solid tumors. Hum. Pathol. 39(11):1582–1589, 2008.

    Article  Google Scholar 

  76. Storch, K., I. Eke, K. Borgmann, M. Krause, C. Richter, K. Becker, E. Schröck, and N. Cordes. Three-dimensional cell growth confers radioresistance by chromatin density modification. Cancer Res. 70(10):3925–3934, 2010.

    Article  Google Scholar 

  77. Sun, A., Y. Jiang, X. Wang, Q. Liu, F. Zhong, Q. He, W. Guan, H. Li, Y. Sun, L. Shi, H. Yu, D. Yang, Y. Xu, Y. Song, W. Tong, D. Li, C. Lin, Y. Hao, C. Geng, D. Yun, X. Zhang, X. Yuan, P. Chen, Y. Zhu, Y. Li, S. Liang, X. Zhao, S. Liu, and F. He. Liverbase: a comprehensive view of human liver biology. J. Proteome Res. 9(1):50–58, 2010.

    Article  Google Scholar 

  78. Sun, S., M. Z. Xu, R. T. Poon, P. J. Day, and J. M. Luk. Circulating lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J. Proteome Res. 9(1):70–78, 2010.

    Article  Google Scholar 

  79. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104, 2013.

    Article  Google Scholar 

  80. Tamiello, C., M. A. Kamps, A. van den Wijngaard, V. L. Verstraeten, F. P. Baaijens, J. L. Broers, and C. C. Bouten. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4(1):61–73, 2013.

    Article  Google Scholar 

  81. Tapley, E. C., and D. A. Starr. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25(1):57–62, 2013.

    Article  Google Scholar 

  82. Tilli, C. M., F. C. Ramaekers, J. L. Broers, C. J. Hutchison, and H. A. Neumann. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br. J. Dermatol. 148(1):102–109, 2003.

    Article  Google Scholar 

  83. Vartiainen, M. K., S. Guettler, B. Larijani, and R. Treisman. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316(5832):1749–1752, 2007.

    Article  Google Scholar 

  84. Venables, R. S., S. McLean, D. Luny, E. Moteleb, S. Morley, R. A. Quinlan, E. B. Lane, and C. J. Hutchison. Expression of individual lamins in basal cell carcinomas of the skin. Br. J. Cancer 84(4):512–519, 2001.

    Article  Google Scholar 

  85. Wang, A. S., S. V. Kozlov, C. L. Stewart, and H. F. Horn. Tissue specific loss of A-type lamins in the gastrointestinal epithelium can enhance polyp size. Differentiation 89(1–2):11–21, 2015.

    Article  Google Scholar 

  86. Wang, Y., R. Wu, K. R. Cho, D. G. Thomas, G. Gossner, J. R. Liu, T. J. Giordano, K. A. Shedden, D. E. Misek, and D. M. Lubman. Differential protein mapping of ovarian serous adenocarcinomas: identification of potential markers for distinct tumor stage. J. Proteome Res. 8(3):1452–1463, 2009.

    Article  Google Scholar 

  87. Wazir, U., M. H. Ahmed, J. M. Bridger, A. Harvey, W. G. Jiang, A. K. Sharma, and K. Mokbel. The clinicopathological significance of lamin A/C, lamin B1 and lamin B receptor mRNA expression in human breast cancer. Cell. Mol. Biol. Lett. 18(4):595–611, 2013.

    Article  Google Scholar 

  88. Welch, J. S., T. J. Ley, D. C. Link, C. A. Miller, D. E. Larson, D. C. Koboldt, L. D. Wartman, T. L. Lamprecht, F. Liu, J. Xia, C. Kandoth, R. S. Fulton, M. D. McLellan, D. J. Dooling, J. W. Wallis, K. Chen, C. C. Harris, H. K. Schmidt, J. M. Kalicki-Veizer, C. Lu, Q. Zhang, L. Lin, M. D. O’Laughlin, J. F. McMichael, K. D. Delehaunty, L. A. Fulton, V. J. Magrini, S. D. McGrath, R. T. Demeter, T. L. Vickery, J. Hundal, L. L. Cook, G. W. Swift, J. P. Reed, P. A. Alldredge, T. N. Wylie, J. R. Walker, M. A. Watson, S. E. Heath, W. D. Shannon, N. Varghese, R. Nagarajan, J. E. Payton, J. D. Baty, S. Kulkarni, J. M. Klco, M. H. Tomasson, P. Westervelt, M. J. Walter, T. A. Graubert, J. F. DiPersio, L. Ding, E. R. Mardis, and R. K. Wilson. The origin and evolution of mutations in acute myeloid leukemia. Cell 150(2):264–278, 2012.

    Article  Google Scholar 

  89. Willis, N. D., T. R. Cox, S. F. Rahman-Casans, K. Smits, S. A. Przyborski, P. van den Brandt, M. van Engeland, M. Weijenberg, R. G. Wilson, A. de Bruine, and C. J. Hutchison. lamin A/C is a risk biomarker in colorectal cancer. PLoS ONE 3(8):e2988, 2008.

    Article  Google Scholar 

  90. Wong, D. J., E. Segal, and H. Y. Chang. Stemness, cancer and cancer stem cells. Cell Cycle 7(23):3622–3624, 2008.

    Article  Google Scholar 

  91. Worman, H. J., and G. Bonne. “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313(10):2121–2133, 2007.

    Article  Google Scholar 

  92. Wu, Z., L. Wu, D. Weng, D. Xu, J. Geng, and F. Zhao. Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma. J. Exp. Clin. Cancer Res. 28:8, 2009.

    Article  Google Scholar 

  93. Xu, R., C. M. Nelson, J. L. Muschler, M. Veiseh, B. K. Vonderhaar, and M. J. Bissell. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. J. Cell Biol. 184(1):57–66, 2009.

    Article  Google Scholar 

  94. Yang, C., M. W. Tibbitt, L. Basta, and K. S. Anseth. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645, 2014.

    Article  Google Scholar 

  95. Zhou, G.-L., L. Xin, W. Song, L.-J. Di, G. Liu, X.-S. Wu, D.-P. Liu, and C.-C. Liang. Active chromatin hub of the mouse α-globin locus forms in a transcription factory of clustered housekeeping genes. Mol. Cell. Biol. 26(13):5096–5105, 2006.

    Article  Google Scholar 

  96. Zullo, J. M., I. A. Demarco, R. Piqué-Regi, D. J. Gaffney, C. B. Epstein, C. J. Spooner, T. R. Luperchio, B. E. Bernstein, J. K. Pritchard, K. L. Reddy, and H. Singh. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell. 149(7):1474–1487, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

The authors in this review were supported by a Physical Sciences in Oncology Center grant from the National Cancer Institute of the National Institutes of Health under Award Number U54CA193417. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

Jerome Irianto, Charlotte R. Pfeifer, Irena L. Ivanovska, Joe Swift, and Dennis E. Discher declare that they have no conflicts of interest.

Ethical standards

No human studies were carried out by authors for this article. No animal studies were carried out by authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Discher.

Additional information

Associate Editor Kris Noel Dahl oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irianto, J., Pfeifer, C.R., Ivanovska, I.L. et al. Nuclear Lamins in Cancer. Cel. Mol. Bioeng. 9, 258–267 (2016). https://doi.org/10.1007/s12195-016-0437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0437-8

Keywords

Navigation