Skip to main content

Effect of M1–M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages


Macrophages become polarized by cues in their environment and this polarization causes a functional change in their behavior. Two main subsets of polarized macrophages have been described. M1, or “classically activated” macrophages, are pro-inflammatory and M2, or “alternatively activated” macrophages, are anti-inflammatory. In this study, we investigated the motility and force generation of primary human macrophages polarized down the M1 and M2 pathways using chemokinesis assays and traction force microscopy on polyacrylamide gels. We found that M1 macrophages are significantly less motile and M2 macrophages are significantly more motile than unactivated M0 macrophages. We also showed that M1 macrophages generate significantly less force than M0 or M2 macrophages. We further found that M0 and M2, but not M1, macrophage force generation is dependent on ROCK signaling, as identified using the chemical inhibitor Y27632. Finally, using the chemical inhibitor blebbistatin, we found that myosin contraction is required for force generation by M0, M1, and M2 macrophages. This study represents the first investigation of the changes in the mechanical motility mechanisms used by macrophages after polarization.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6



C-C chemokine receptor type 7


C-C chemokine ligand type 22



IL-12, -23, -4, -10, -1β:

Interleukin-12, 23, 4, 10, 1β




Macrophage colony stimulating factor


Matrix metallopeptidase 9


N-6-((acryloyl)amino)hexanoic acid


RhoA Kinase


Tumor necrosis factor alpha


  1. 1.

    Ambarus, C. A., S. Krausz, M. van Eijk, J. Hamann, T. R. Radstake, K. A. Reedquist, P. P. Tak, and D. L. Baeten. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J. Immunol. Methods 375:196–206, 2012.

    Article  Google Scholar 

  2. 2.

    Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.

    Article  Google Scholar 

  3. 3.

    Biswas, S. K., M. Chittezhath, I. N. Shalova, and J. Y. Lim. Macrophage polarization and plasticity in health and disease. Immunol. Res. 53:11–24, 2012.

    Article  Google Scholar 

  4. 4.

    Biswas, S. K., and A. Mantovani. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–896, 2010.

    Article  Google Scholar 

  5. 5.

    Chioda, M., E. Peranzoni, G. Desantis, F. Papalini, E. Falisi, S. Solito, S. Mandruzzato, and V. Bronte. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev. 30:27–43, 2011.

    Article  Google Scholar 

  6. 6.

    Condeelis, J., and J. W. Pollard. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266, 2006.

    Article  Google Scholar 

  7. 7.

    Cougoule, C., E. Van Goethem, V. Le Cabec, F. Lafouresse, L. Dupre, V. Mehraj, J. L. Mege, C. Lastrucci, and I. Maridonneau-Parini. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91:938–949, 2012.

    Article  Google Scholar 

  8. 8.

    Dembo, M. The LIBTRC User’s Guide for Version 2.4. Boston, 2010.

  9. 9.

    Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.

    Article  Google Scholar 

  10. 10.

    Dunn, G. A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12:14–33, 1983.

    Google Scholar 

  11. 11.

    Hao, N. B., M. H. Lu, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012:948098, 2012.

    Article  Google Scholar 

  12. 12.

    Hind, L. E., M. Dembo, and D. A. Hammer. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness. Integr. Biol. (Camb) 7:447–453, 2015.

    Article  Google Scholar 

  13. 13.

    Hind, L. E., J. L. Mackay, D. Cox, and D. A. Hammer. Two-dimensional motility of a macrophage cell line on microcontact-printed fibronectin. Cytoskeleton (Hoboken) 71:542–554, 2014.

    Article  Google Scholar 

  14. 14.

    Jannat, R. A., M. Dembo, and D. A. Hammer. Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101:575–584, 2011.

    Article  Google Scholar 

  15. 15.

    Mantovani, A., and A. Sica. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22:231–237, 2010.

    Article  Google Scholar 

  16. 16.

    Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555, 2002.

    Article  Google Scholar 

  17. 17.

    McWhorter, F. Y., T. Wang, P. Nguyen, T. Chung, and W. F. Liu. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 110:17253–17258, 2013.

    Article  Google Scholar 

  18. 18.

    Nassiri, S., I. Zakeri, M. S. Weingarten, and K. L. Spiller. Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers. J Invest Dermatol 135:1700–1703, 2015.

    Article  Google Scholar 

  19. 19.

    Oh, D. Y., H. Morinaga, S. Talukdar, E. J. Bae, and J. M. Olefsky. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354, 2012.

    Article  Google Scholar 

  20. 20.

    Pelham, Jr, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.

    Article  Google Scholar 

  21. 21.

    Pless, D. D., Y. C. Lee, S. Roseman, and R. L. Schnaar. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258:2340–2349, 1983.

    Google Scholar 

  22. 22.

    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.

    Article  Google Scholar 

  23. 23.

    Sharma, V. P., B. T. Beaty, A. Patsialou, H. Liu, M. Clarke, D. Cox, J. S. Condeelis, and R. J. Eddy. Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital 1:77–85, 2012.

    Article  Google Scholar 

  24. 24.

    Solinas, G., S. Schiarea, M. Liguori, M. Fabbri, S. Pesce, L. Zammataro, F. Pasqualini, M. Nebuloni, C. Chiabrando, A. Mantovani, and P. Allavena. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185:642–652, 2010.

    Article  Google Scholar 

  25. 25.

    Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.

    Article  Google Scholar 

  26. 26.

    Vogel, D. Y., P. D. Heijnen, M. Breur, H. E. de Vries, A. T. Tool, S. Amor, and C. D. Dijkstra. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflamm. 11:23, 2014.

    Article  Google Scholar 

  27. 27.

    Worthylake, R. A., S. Lemoine, J. M. Watson, and K. Burridge. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154:147–160, 2001.

    Article  Google Scholar 

Download references


This work was supported by NIH GM1094287 and HL18208.

Conflict of Interest

Laurel E. Hind, Emily B. Lurier, Micah Dembo, Kara L. Spiller, and Daniel A. Hammer declare that they have no conflicts of interest.

Ethical Standards

All human subjects research was carried out in accordance with institutional guidelines and was approved by a University of Pennsylvania Institutional Review Board under HL18208. The authors performed no animal studies in this work.

Author information



Corresponding author

Correspondence to Daniel A. Hammer.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic Supplementary Material

Supplementary Video 1

M0-M1-M2 macrophages migrating on 10,400 Pa polyacrylamide gels coated with 5 µg/mL fibronectin. Left: M0, Center: M1, Right: M2. Supplementary material 1 (AVI 10991 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hind, L.E., Lurier, E.B., Dembo, M. et al. Effect of M1–M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages. Cel. Mol. Bioeng. 9, 455–465 (2016).

Download citation


  • M1/M2 Macrophage Polarization
  • Mechanotransduction
  • Chemokinesis
  • Traction force microscopy