Cellular and Molecular Bioengineering

, Volume 9, Issue 3, pp 455–465 | Cite as

Effect of M1–M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages

  • Laurel E. Hind
  • Emily B. Lurier
  • Micah Dembo
  • Kara L. Spiller
  • Daniel A. Hammer
Article

Abstract

Macrophages become polarized by cues in their environment and this polarization causes a functional change in their behavior. Two main subsets of polarized macrophages have been described. M1, or “classically activated” macrophages, are pro-inflammatory and M2, or “alternatively activated” macrophages, are anti-inflammatory. In this study, we investigated the motility and force generation of primary human macrophages polarized down the M1 and M2 pathways using chemokinesis assays and traction force microscopy on polyacrylamide gels. We found that M1 macrophages are significantly less motile and M2 macrophages are significantly more motile than unactivated M0 macrophages. We also showed that M1 macrophages generate significantly less force than M0 or M2 macrophages. We further found that M0 and M2, but not M1, macrophage force generation is dependent on ROCK signaling, as identified using the chemical inhibitor Y27632. Finally, using the chemical inhibitor blebbistatin, we found that myosin contraction is required for force generation by M0, M1, and M2 macrophages. This study represents the first investigation of the changes in the mechanical motility mechanisms used by macrophages after polarization.

Keywords

M1/M2 Macrophage Polarization Mechanotransduction Chemokinesis Traction force microscopy 

Abbreviations

CCR7

C-C chemokine receptor type 7

CCL22

C-C chemokine ligand type 22

IFNγ

Interferon-gamma

IL-12, -23, -4, -10, -1β

Interleukin-12, 23, 4, 10, 1β

LPS

Lipopolysaccharide

M-CSF

Macrophage colony stimulating factor

MMP9

Matrix metallopeptidase 9

N-6

N-6-((acryloyl)amino)hexanoic acid

ROCK

RhoA Kinase

TNFα

Tumor necrosis factor alpha

Supplementary material

12195_2016_435_MOESM1_ESM.avi (10.7 mb)
Supplementary Video 1M0-M1-M2 macrophages migrating on 10,400 Pa polyacrylamide gels coated with 5 µg/mL fibronectin. Left: M0, Center: M1, Right: M2. Supplementary material 1 (AVI 10991 kb)

References

  1. 1.
    Ambarus, C. A., S. Krausz, M. van Eijk, J. Hamann, T. R. Radstake, K. A. Reedquist, P. P. Tak, and D. L. Baeten. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J. Immunol. Methods 375:196–206, 2012.CrossRefGoogle Scholar
  2. 2.
    Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R. K. Gherardi, and B. Chazaud. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–1069, 2007.CrossRefGoogle Scholar
  3. 3.
    Biswas, S. K., M. Chittezhath, I. N. Shalova, and J. Y. Lim. Macrophage polarization and plasticity in health and disease. Immunol. Res. 53:11–24, 2012.CrossRefGoogle Scholar
  4. 4.
    Biswas, S. K., and A. Mantovani. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11:889–896, 2010.CrossRefGoogle Scholar
  5. 5.
    Chioda, M., E. Peranzoni, G. Desantis, F. Papalini, E. Falisi, S. Solito, S. Mandruzzato, and V. Bronte. Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Rev. 30:27–43, 2011.CrossRefGoogle Scholar
  6. 6.
    Condeelis, J., and J. W. Pollard. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266, 2006.CrossRefGoogle Scholar
  7. 7.
    Cougoule, C., E. Van Goethem, V. Le Cabec, F. Lafouresse, L. Dupre, V. Mehraj, J. L. Mege, C. Lastrucci, and I. Maridonneau-Parini. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91:938–949, 2012.CrossRefGoogle Scholar
  8. 8.
    Dembo, M. The LIBTRC User’s Guide for Version 2.4. Boston, 2010.Google Scholar
  9. 9.
    Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–2316, 1999.CrossRefGoogle Scholar
  10. 10.
    Dunn, G. A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12:14–33, 1983.Google Scholar
  11. 11.
    Hao, N. B., M. H. Lu, Y. H. Fan, Y. L. Cao, Z. R. Zhang, and S. M. Yang. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012:948098, 2012.CrossRefGoogle Scholar
  12. 12.
    Hind, L. E., M. Dembo, and D. A. Hammer. Macrophage motility is driven by frontal-towing with a force magnitude dependent on substrate stiffness. Integr. Biol. (Camb) 7:447–453, 2015.CrossRefGoogle Scholar
  13. 13.
    Hind, L. E., J. L. Mackay, D. Cox, and D. A. Hammer. Two-dimensional motility of a macrophage cell line on microcontact-printed fibronectin. Cytoskeleton (Hoboken) 71:542–554, 2014.CrossRefGoogle Scholar
  14. 14.
    Jannat, R. A., M. Dembo, and D. A. Hammer. Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101:575–584, 2011.CrossRefGoogle Scholar
  15. 15.
    Mantovani, A., and A. Sica. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22:231–237, 2010.CrossRefGoogle Scholar
  16. 16.
    Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555, 2002.CrossRefGoogle Scholar
  17. 17.
    McWhorter, F. Y., T. Wang, P. Nguyen, T. Chung, and W. F. Liu. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 110:17253–17258, 2013.CrossRefGoogle Scholar
  18. 18.
    Nassiri, S., I. Zakeri, M. S. Weingarten, and K. L. Spiller. Relative expression of proinflammatory and antiinflammatory genes reveals differences between healing and nonhealing human chronic diabetic foot ulcers. J Invest Dermatol 135:1700–1703, 2015.CrossRefGoogle Scholar
  19. 19.
    Oh, D. Y., H. Morinaga, S. Talukdar, E. J. Bae, and J. M. Olefsky. Increased macrophage migration into adipose tissue in obese mice. Diabetes 61:346–354, 2012.CrossRefGoogle Scholar
  20. 20.
    Pelham, Jr, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661–13665, 1997.CrossRefGoogle Scholar
  21. 21.
    Pless, D. D., Y. C. Lee, S. Roseman, and R. L. Schnaar. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258:2340–2349, 1983.Google Scholar
  22. 22.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89:676–689, 2005.CrossRefGoogle Scholar
  23. 23.
    Sharma, V. P., B. T. Beaty, A. Patsialou, H. Liu, M. Clarke, D. Cox, J. S. Condeelis, and R. J. Eddy. Reconstitution of in vivo macrophage-tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. Intravital 1:77–85, 2012.CrossRefGoogle Scholar
  24. 24.
    Solinas, G., S. Schiarea, M. Liguori, M. Fabbri, S. Pesce, L. Zammataro, F. Pasqualini, M. Nebuloni, C. Chiabrando, A. Mantovani, and P. Allavena. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185:642–652, 2010.CrossRefGoogle Scholar
  25. 25.
    Spiller, K. L., R. R. Anfang, K. J. Spiller, J. Ng, K. R. Nakazawa, J. W. Daulton, and G. Vunjak-Novakovic. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35:4477–4488, 2014.CrossRefGoogle Scholar
  26. 26.
    Vogel, D. Y., P. D. Heijnen, M. Breur, H. E. de Vries, A. T. Tool, S. Amor, and C. D. Dijkstra. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation. J. Neuroinflamm. 11:23, 2014.CrossRefGoogle Scholar
  27. 27.
    Worthylake, R. A., S. Lemoine, J. M. Watson, and K. Burridge. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154:147–160, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Laurel E. Hind
    • 1
  • Emily B. Lurier
    • 3
  • Micah Dembo
    • 4
  • Kara L. Spiller
    • 3
  • Daniel A. Hammer
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.School of Biomedical Engineering, Science, and Health SystemsDrexel UniversityPhiladelphiaUSA
  4. 4.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations