Skip to main content
Log in

Modeling the Progression of Epithelial Leak Caused by Overdistension

Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Albert, R. K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 185:702–708, 2012.

    Article  Google Scholar 

  2. Alcaraz, J., L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J . 84:2071–2079, 2003.

    Article  Google Scholar 

  3. Allen, G., L. K. A. Lundblad, P. Parsons, and J. H. T. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.

    Article  Google Scholar 

  4. ARDSnet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New Engl. J. Med. 342:1301–1308, 2000.

    Article  Google Scholar 

  5. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd ed.). Philadelphia, PA: SIAM, 1994.

    Book  Google Scholar 

  6. Bilek, A. M., K. C. Dee, and D. P. Gaver. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94:770–783, 2003.

    Article  Google Scholar 

  7. Cavanaugh, K. J., T. S. Cohen, and S. S. Margulies. Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am. J. Physiol. Cell Physiol. 290:C1179–C1188, 2006.

    Article  Google Scholar 

  8. Cavanaugh, K. J., J. Oswari, and S. S. Margulies. Role of stretch on tight junction structure in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 25:584–591, 2001.

    Article  Google Scholar 

  9. Cohen, T. S., K. J. Cavanaugh, and S. S. Margulies. Frequency and peak stretch magnitude affect alveolar epithelial permeability. Eur. Respir. J. 32:854–861, 2008.

    Article  Google Scholar 

  10. Dassow, C., C. Armbruster, C. Friedrich, E. Smudde, J. Guttmann, and S. Schumann. A method to measure mechanical properties of pulmonary epithelial cell layers. J. Biomed. Mater. Res. B 101:1164–1171, 2013.

    Article  Google Scholar 

  11. Davidovich, N., B. C. DiPaolo, G. G. Lawrence, P. Chhour, N. Yehya, and S. S. Margulies. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am. J. Respir. Cell Mol. Biol. 49:156–164, 2013.

    Article  Google Scholar 

  12. dos Santos, C. C., and A. S. Slutsky. The contribution of biophysical lung injury to the development of biotrauma. Annu. Rev. Physiol. 68:585–618, 2006.

    Article  Google Scholar 

  13. Féréol, S., R. Fodil, G. Pelle, B. Louis, and D. Isabey. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs). Respir. Physiol. Neurobiol. 163:3–16, 2008.

    Article  Google Scholar 

  14. Gajic, O., J. Lee, C. H. Doerr, J. C. Berrios, J. L. Myers, and R. D. Hubmayr. Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med. 167:1057–1063, 2003.

    Article  Google Scholar 

  15. Higuita-Castro, N., C. Mihai, D. J. Hansford, and S. N. Ghadiali. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J. Appl. Physiol. 117:1231–1242, 2014.

    Article  Google Scholar 

  16. Jacob, A. M., and D. P. Gaver. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. J. Appl. Physiol. 113:1377–1387, 2012.

    Article  Google Scholar 

  17. Laurent, V., R. Fodil, P. Cañadas, S. Féréol, B. Louis, E. Planus, and D. Isabey. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. Biomed. Eng. 31:1263–1278, 2003.

    Article  Google Scholar 

  18. Ma, B., and J. H. Bates. Continuum vs. spring network models of airway-parenchymal interdependence. J. Appl. Physiol. 113:124–129, 2012.

    Article  Google Scholar 

  19. Ma, B., and J. H. Bates. Mechanical interactions between adjacent airways in the lung. J. Appl. Physiol. 116:628–634, 2014.

    Article  Google Scholar 

  20. Ma, B., B. Breen, and J. H. Bates. Influence of parenchymal heterogeneity on airway-parenchymal interdependence. Respir. Physiol. Neurobiol. 188:94–101, 2013.

    Article  Google Scholar 

  21. Ma, B., M. Sanderson, and J. H. Bates. Airway-parenchymal interdependence in the lung slice. Respir. Physiol. Neurobiol. 185:211–216, 2013.

    Article  Google Scholar 

  22. Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.

    Article  Google Scholar 

  23. Matthay, M. A., S. Bhattacharya, D. Gaver, L. B. Ware, L. H. K. Lim, O. Syrkina, F. Eyal, and R. Hubmayr. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L678–L682, 2002.

    Article  Google Scholar 

  24. Matthay, M. A., L. B. Ware, and G. A. Zimmerman. The acute respiratory distress syndrome. J. Clin. Invest. 122:2731–2740, 2012.

    Article  Google Scholar 

  25. Murphy, D. B., N. Cregg, L. Tremblay, D. Engelberts, J. G. Laffey, A. S. Slutsky, A. Romaschin, and B. P. Kavanagh. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am. J. Respir. Crit. Care Med. 162:27–33, 2000.

    Article  Google Scholar 

  26. Protti, A., M. Cressoni, A. Santini, T. Langer, C. Mietto, D. Febres, M. Chierichetti, S. Coppola, G. Conte, S. Gatti, O. Leopardi, S. Masson, L. Lombardi, M. Lazzerini, E. Rampoldi, P. Cadringher, and L. Gattinoni. Lung stress and strain during mechanical ventilation any safe threshold? Am. J. Respir. Crit. Care Med. 183:1354–1362, 2011.

    Article  Google Scholar 

  27. Roan, E., C. M. Waters, B. Teng, M. Ghosh, and A. Schwingshackl. The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS ONE 9:e89429, 2014.

    Article  Google Scholar 

  28. Roan, E., K. Wilhelm, A. Bada, P. S. Makena, V. K. Gorantla, S. E. Sinclair, and C. M. Waters. Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 302:L1235–L1241, 2012.

    Article  Google Scholar 

  29. Seah, A. S., K. A. Grant, M. Aliyeva, G. B. Allen, and J. H. T. Bates. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39:1505–1516, 2011.

    Article  Google Scholar 

  30. Smith, B. J., K. A. Grant, and J. H. T. Bates. Linking the development of ventilator-induced injury to mechanical function in the lung. Ann. Biomed. Eng. 41:527–536, 2013.

    Article  Google Scholar 

  31. Suki, B., and R. Hubmayr. Epithelial and endothelial damage induced by mechanical ventilation modes. Curr. Opin. Crit. Care 20:17–24, 2014.

    Article  Google Scholar 

  32. Tremblay, L. N., and A. S. Slutsky. Ventilator-induced injury: from barotrauma to biotrauma. Proc. Assoc. Am. Physician 110:482–488, 1998.

    Google Scholar 

  33. Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275:L1173–L1183, 1998.

    Google Scholar 

  34. Tschumperlin, D. J., J. Oswari, and S. S. Margulies. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am. J. Respir. Crit. Care Med. 162:357–362, 2000.

    Article  Google Scholar 

  35. Vlahakis, N. E., M. A. Schroeder, R. E. Pagano, and R. D. Hubmayr. Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L938–L946, 2001.

    Google Scholar 

  36. Waters, C. M., E. Roan, and D. Navajas. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr. Physiol. 2:1–29, 2012.

    Google Scholar 

  37. Weibel, E. R. On the tricks alveolar epithelial cells play to make a good lung. Am. J. Respir. Crit. Care Med. 191:504–513, 2015.

    Article  Google Scholar 

  38. Wilhelm, K. R., E. Roan, M. C. Ghosh, K. Parthasarathi, and C. M. Waters. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase. FEBS J. 281:957–969, 2014.

    Article  Google Scholar 

  39. Yalcin, H. C., K. M. Hallow, J. Wang, M. T. Wei, H. D. Ou-Yang, and S. N. Ghadiali. Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am. J. Physiol. Lung Cell. Mol. Physiol. 297:L881–L891, 2009.

    Article  Google Scholar 

  40. Yang, T. Y. Finite Element Structural Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1986.

    Google Scholar 

  41. Ye, H., Q. Y. Zhan, Y. H. Ren, X. Y. Liu, C. Yang, and C. Wang. Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respir. Physiol. Neurobiol. 180:237–246, 2012.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health grants R01 HL-124052 and P20 GM-103532.

Conflicts of Interest

Katharine L. Hamlington, Baoshun Ma, Bradford J. Smith, and Jason H. T. Bates declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. T. Bates.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. The movie shows the leak progression in the 45-cell network. Stretch force F s = 0.07, spring stiffness distribution k = 1, force threshold F t = 0.2, and cell edge length h = 1. The shading represents the value of the maximum spring force within each cell.

Supplementary material 1 (MOV 6518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamlington, K.L., Ma, B., Smith, B.J. et al. Modeling the Progression of Epithelial Leak Caused by Overdistension. Cel. Mol. Bioeng. 9, 151–161 (2016). https://doi.org/10.1007/s12195-015-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0426-3

Keywords

Navigation