Abstract
Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung.






References
Albert, R. K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 185:702–708, 2012.
Alcaraz, J., L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farre, and D. Navajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J . 84:2071–2079, 2003.
Allen, G., L. K. A. Lundblad, P. Parsons, and J. H. T. Bates. Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93:1709–1715, 2002.
ARDSnet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New Engl. J. Med. 342:1301–1308, 2000.
Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (2nd ed.). Philadelphia, PA: SIAM, 1994.
Bilek, A. M., K. C. Dee, and D. P. Gaver. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J. Appl. Physiol. 94:770–783, 2003.
Cavanaugh, K. J., T. S. Cohen, and S. S. Margulies. Stretch increases alveolar epithelial permeability to uncharged micromolecules. Am. J. Physiol. Cell Physiol. 290:C1179–C1188, 2006.
Cavanaugh, K. J., J. Oswari, and S. S. Margulies. Role of stretch on tight junction structure in alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 25:584–591, 2001.
Cohen, T. S., K. J. Cavanaugh, and S. S. Margulies. Frequency and peak stretch magnitude affect alveolar epithelial permeability. Eur. Respir. J. 32:854–861, 2008.
Dassow, C., C. Armbruster, C. Friedrich, E. Smudde, J. Guttmann, and S. Schumann. A method to measure mechanical properties of pulmonary epithelial cell layers. J. Biomed. Mater. Res. B 101:1164–1171, 2013.
Davidovich, N., B. C. DiPaolo, G. G. Lawrence, P. Chhour, N. Yehya, and S. S. Margulies. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am. J. Respir. Cell Mol. Biol. 49:156–164, 2013.
dos Santos, C. C., and A. S. Slutsky. The contribution of biophysical lung injury to the development of biotrauma. Annu. Rev. Physiol. 68:585–618, 2006.
Féréol, S., R. Fodil, G. Pelle, B. Louis, and D. Isabey. Cell mechanics of alveolar epithelial cells (AECs) and macrophages (AMs). Respir. Physiol. Neurobiol. 163:3–16, 2008.
Gajic, O., J. Lee, C. H. Doerr, J. C. Berrios, J. L. Myers, and R. D. Hubmayr. Ventilator-induced cell wounding and repair in the intact lung. Am. J. Respir. Crit. Care Med. 167:1057–1063, 2003.
Higuita-Castro, N., C. Mihai, D. J. Hansford, and S. N. Ghadiali. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J. Appl. Physiol. 117:1231–1242, 2014.
Jacob, A. M., and D. P. Gaver. Atelectrauma disrupts pulmonary epithelial barrier integrity and alters the distribution of tight junction proteins ZO-1 and claudin 4. J. Appl. Physiol. 113:1377–1387, 2012.
Laurent, V., R. Fodil, P. Cañadas, S. Féréol, B. Louis, E. Planus, and D. Isabey. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Ann. Biomed. Eng. 31:1263–1278, 2003.
Ma, B., and J. H. Bates. Continuum vs. spring network models of airway-parenchymal interdependence. J. Appl. Physiol. 113:124–129, 2012.
Ma, B., and J. H. Bates. Mechanical interactions between adjacent airways in the lung. J. Appl. Physiol. 116:628–634, 2014.
Ma, B., B. Breen, and J. H. Bates. Influence of parenchymal heterogeneity on airway-parenchymal interdependence. Respir. Physiol. Neurobiol. 188:94–101, 2013.
Ma, B., M. Sanderson, and J. H. Bates. Airway-parenchymal interdependence in the lung slice. Respir. Physiol. Neurobiol. 185:211–216, 2013.
Massa, C. B., G. B. Allen, and J. H. T. Bates. Modeling the dynamics of recruitment and derecruitment in mice with acute lung injury. J. Appl. Physiol. 105:1813–1821, 2008.
Matthay, M. A., S. Bhattacharya, D. Gaver, L. B. Ware, L. H. K. Lim, O. Syrkina, F. Eyal, and R. Hubmayr. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L678–L682, 2002.
Matthay, M. A., L. B. Ware, and G. A. Zimmerman. The acute respiratory distress syndrome. J. Clin. Invest. 122:2731–2740, 2012.
Murphy, D. B., N. Cregg, L. Tremblay, D. Engelberts, J. G. Laffey, A. S. Slutsky, A. Romaschin, and B. P. Kavanagh. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am. J. Respir. Crit. Care Med. 162:27–33, 2000.
Protti, A., M. Cressoni, A. Santini, T. Langer, C. Mietto, D. Febres, M. Chierichetti, S. Coppola, G. Conte, S. Gatti, O. Leopardi, S. Masson, L. Lombardi, M. Lazzerini, E. Rampoldi, P. Cadringher, and L. Gattinoni. Lung stress and strain during mechanical ventilation any safe threshold? Am. J. Respir. Crit. Care Med. 183:1354–1362, 2011.
Roan, E., C. M. Waters, B. Teng, M. Ghosh, and A. Schwingshackl. The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS ONE 9:e89429, 2014.
Roan, E., K. Wilhelm, A. Bada, P. S. Makena, V. K. Gorantla, S. E. Sinclair, and C. M. Waters. Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 302:L1235–L1241, 2012.
Seah, A. S., K. A. Grant, M. Aliyeva, G. B. Allen, and J. H. T. Bates. Quantifying the roles of tidal volume and PEEP in the pathogenesis of ventilator-induced lung injury. Ann. Biomed. Eng. 39:1505–1516, 2011.
Smith, B. J., K. A. Grant, and J. H. T. Bates. Linking the development of ventilator-induced injury to mechanical function in the lung. Ann. Biomed. Eng. 41:527–536, 2013.
Suki, B., and R. Hubmayr. Epithelial and endothelial damage induced by mechanical ventilation modes. Curr. Opin. Crit. Care 20:17–24, 2014.
Tremblay, L. N., and A. S. Slutsky. Ventilator-induced injury: from barotrauma to biotrauma. Proc. Assoc. Am. Physician 110:482–488, 1998.
Tschumperlin, D. J., and S. S. Margulies. Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am. J. Physiol. 275:L1173–L1183, 1998.
Tschumperlin, D. J., J. Oswari, and S. S. Margulies. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am. J. Respir. Crit. Care Med. 162:357–362, 2000.
Vlahakis, N. E., M. A. Schroeder, R. E. Pagano, and R. D. Hubmayr. Deformation-induced lipid trafficking in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L938–L946, 2001.
Waters, C. M., E. Roan, and D. Navajas. Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr. Physiol. 2:1–29, 2012.
Weibel, E. R. On the tricks alveolar epithelial cells play to make a good lung. Am. J. Respir. Crit. Care Med. 191:504–513, 2015.
Wilhelm, K. R., E. Roan, M. C. Ghosh, K. Parthasarathi, and C. M. Waters. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase. FEBS J. 281:957–969, 2014.
Yalcin, H. C., K. M. Hallow, J. Wang, M. T. Wei, H. D. Ou-Yang, and S. N. Ghadiali. Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening. Am. J. Physiol. Lung Cell. Mol. Physiol. 297:L881–L891, 2009.
Yang, T. Y. Finite Element Structural Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1986.
Ye, H., Q. Y. Zhan, Y. H. Ren, X. Y. Liu, C. Yang, and C. Wang. Cyclic deformation-induced injury and differentiation of rat alveolar epithelial type II cells. Respir. Physiol. Neurobiol. 180:237–246, 2012.
Acknowledgments
This study was supported by National Institutes of Health grants R01 HL-124052 and P20 GM-103532.
Conflicts of Interest
Katharine L. Hamlington, Baoshun Ma, Bradford J. Smith, and Jason H. T. Bates declare that they have no conflicts of interest.
Ethical Standards
No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Aleksander S. Popel oversaw the review of this article.
Electronic Supplementary Material
Below is the link to the electronic supplementary material. The movie shows the leak progression in the 45-cell network. Stretch force F s = 0.07, spring stiffness distribution k = 1, force threshold F t = 0.2, and cell edge length h = 1. The shading represents the value of the maximum spring force within each cell.
Rights and permissions
About this article
Cite this article
Hamlington, K.L., Ma, B., Smith, B.J. et al. Modeling the Progression of Epithelial Leak Caused by Overdistension. Cel. Mol. Bioeng. 9, 151–161 (2016). https://doi.org/10.1007/s12195-015-0426-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12195-015-0426-3