Skip to main content

A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress


Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by atomic force microscopy (AFM). Parallel plate flow chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational fluid dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. Ayres, C. E., et al. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Polym. Ed. 19:603–621, 2008.

    Article  Google Scholar 

  2. Azerad, P., and E. Bänsch. Quasi-stability of the primary flow in a cone and plate viscometer. J. Math. Fluid Mech. 6:253–271, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacabac, R. G., et al. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.

    Article  Google Scholar 

  4. Barbee, K. A., P. F. Davies, and R. Lal. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74:163–171, 1994.

    Article  Google Scholar 

  5. Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28:363–372, 2000.

    Article  Google Scholar 

  6. Buschmann, M. H., P. Dieterich, N. A. Adams, and H. J. Schnittler. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng. 89:493–502, 2005.

    Article  Google Scholar 

  7. Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    Article  Google Scholar 

  8. Deanfield, J. E., J. P. Halcox, and T. J. Rabelink. Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295, 2007.

    Google Scholar 

  9. Dreyer, L., et al. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells. Clin. Hemorheol. Microcirc. 49:391–397, 2011.

    Google Scholar 

  10. Fior, R., J. Kwok, F. Malfatti, O. Sbaizero, and R. Lal. Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1229-8.

    Google Scholar 

  11. Franz, C. M., and P.-H. Puech. Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cell. Mol. Bioeng. 1:289–300, 2008. doi:10.1007/s12195-008-0037-3.

    Article  Google Scholar 

  12. Grainger, S. J., and A. J. Putnam. Mechanical and chemical signaling in angiogenesis. Stud. Mechanobiol. Tissue Eng. Biomater. 12(12):185–209, 2013. doi:10.1007/978-3-642-30856-7.

    Article  Google Scholar 

  13. Haase, K., A. E. Pelling, and K. Haase. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12:20140970, 2015.

    Article  Google Scholar 

  14. Hayashi, K. Tensile properties and local stiffness of cells. In: Mechanics of Biological Tissue, edited by G. A. Holzapfel and R. W. Ogden. Berlin, Heidelberg: Springer, 2006, pp. 137–152.

    Chapter  Google Scholar 

  15. Hou, H. W., W. C. Lee, M. C. Leong, S. Sonam, S. R. K. Vedula, and C. T. Lim. Microfluidics for applications in cell mechanics and mechanobiology. Cell. Mol. Bioeng. 4:591–602, 2011. doi:10.1007/s12195-011-0209-4.

    Article  Google Scholar 

  16. Hsiai, T. K., et al. Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates (∂τ/∂t). Ann. Biomed. Eng. 30:646–656, 2002.

    Article  Google Scholar 

  17. Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91:877–887, 2002.

    Article  Google Scholar 

  18. Malek, A. M., R. Ahlquist, G. H. Gibbons, V. J. Dzau, and S. Izumo. A cone-plate apparatus for the in vitro biochemical and molecular analysis of the effect of shear stress on adherent cells. Methods Cell Sci. 17:165–176, 1995.

    Article  Google Scholar 

  19. McCann, J. A., S. D. Peterson, M. W. Plesniak, T. J. Webster, and K. M. Haberstroh. Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses. Ann. Biomed. Eng. 33:328–336, 2005.

    Article  Google Scholar 

  20. Pesen, D., and J. H. Hoh. Micromechanical architecture of the endothelial cell cortex. Biophys. J . 88:670–679, 2005.

    Article  Google Scholar 

  21. Plint, M. A., and L. Boswirth. Fluid Mechanics: A Laboratory Course. London: Charles Griffin & Company Limited, 1978.

    Google Scholar 

  22. Prado, C. M., S. G. Ramos, J. Elias, and M. A. Rossi. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int. J. Exp. Pathol. 89:72–80, 2008.

    Article  Google Scholar 

  23. Roduit, C., S. Sekatski, G. Dietler, S. Catsicas, F. Lafont, and S. Kasas. Stiffness tomography by atomic force microscopy. Biophys. J. 97:674–677, 2009. doi:10.1016/j.bpj.2009.05.010.

    Article  Google Scholar 

  24. Romet-Lemonne, G., and A. Jégou. Mechanotransduction down to individual actin filaments. Eur. J. Cell Biol. 92:333–338, 2013. doi:10.1016/j.ejcb.2013.10.011.

    Article  Google Scholar 

  25. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Article  Google Scholar 

  26. Shankaran, H., and S. Neelamegham. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys. J. 80:2631–2648, 2001.

    Article  Google Scholar 

  27. Stroka, K. M., and H. Aranda-Espinoza. Effects of morphology vs. cell–cell interactions on endothelial cell stiffness. Cell. Mol. Bioeng. 4:9–27, 2011. doi:10.1007/s12195-010-0142-y.

    Article  Google Scholar 

  28. Sun, Y., C. S. Chen, and J. Fu. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41:519–542, 2012.

    Article  Google Scholar 

  29. Suresh, S. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 21:1871–1877, 2006.

    Article  MathSciNet  Google Scholar 

  30. Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33:963–971, 2005.

    Article  Google Scholar 

  31. Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.

    Article  Google Scholar 

  32. Van der Meer, A. D., A. A. Poot, J. Feijen, and I. Vermes. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4:1–5, 2010.

    Google Scholar 

  33. Vargas-Pinto, R., H. Gong, A. Vahabikashi, and M. Johnson. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys. J. 105:300–309, 2013. doi:10.1016/j.bpj.2013.05.034.

    Article  Google Scholar 

Download references


Andrew K. Wong, Pierre LLanos, Nickolas Boroda are the recipients of the Paul Saueracker Summer Research Fellowship at Hofstra University. We would like to acknowledge Dr. Shahin Rafii for providing HUVECs, and Dr. Nicholas Merna for critical review of the manuscript.

Conflict of Interest

Andrew K. Wong, Pierre LLanos, Nickolas Boroda, Seth R. Rosenberg, and Sina Y. Rabbany declare they have no conflicts of interest.

Ethical Statements

No human subjects or animal studies were used by the authors for this article.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sina Y. Rabbany.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, A.K., LLanos, P., Boroda, N. et al. A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cel. Mol. Bioeng. 9, 127–138 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Atomic force microscopy
  • Cone-and-plate viscometer
  • Actin remodeling