Abstract
Shear stresses induced by laminar fluid flow are essential to properly recapitulate the physiological microenvironment experienced by endothelial cells (ECs). ECs respond to these stresses via mechanotransduction by modulating their phenotype and biomechanical characteristics, which can be characterized by atomic force microscopy (AFM). Parallel plate flow chambers (PPFCs) apply unidirectional laminar fluid flow to EC monolayers in vitro. Since ECs in sealed PPFCs are inaccessible to AFM probes, cone-and-plate viscometers (CPs) are commonly used to apply shear stress. This paper presents a comparison of the efficacies of both methods. Computational fluid dynamic simulation and validation testing using EC responses as a metric have indicated limitations in the use of CPs to apply laminar shear stress. Monolayers subjected to laminar fluid flow in a PPFC respond by increasing cortical stiffness, elongating, and aligning filamentous actin in the direction of fluid flow to a greater extent than CP devices. Limitations using CP devices to provide laminar flow across an EC monolayer suggest they are better suited when studying EC response for disturbed flow conditions. PPFC platforms allow for exposure of ECs to laminar fluid flow conditions, recapitulating cellular biomechanical behaviors, whereas CP platforms allow for mechanical characterization of ECs under secondary flow.
This is a preview of subscription content, access via your institution.






References
Ayres, C. E., et al. Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. J. Biomater. Sci. Polym. Ed. 19:603–621, 2008.
Azerad, P., and E. Bänsch. Quasi-stability of the primary flow in a cone and plate viscometer. J. Math. Fluid Mech. 6:253–271, 2004.
Bacabac, R. G., et al. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.
Barbee, K. A., P. F. Davies, and R. Lal. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74:163–171, 1994.
Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28:363–372, 2000.
Buschmann, M. H., P. Dieterich, N. A. Adams, and H. J. Schnittler. Analysis of flow in a cone-and-plate apparatus with respect to spatial and temporal effects on endothelial cells. Biotechnol. Bioeng. 89:493–502, 2005.
Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.
Deanfield, J. E., J. P. Halcox, and T. J. Rabelink. Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295, 2007.
Dreyer, L., et al. An advanced cone-and-plate reactor for the in vitro-application of shear stress on adherent cells. Clin. Hemorheol. Microcirc. 49:391–397, 2011.
Fior, R., J. Kwok, F. Malfatti, O. Sbaizero, and R. Lal. Biocompatible optically transparent MEMS for micromechanical stimulation and multimodal imaging of living cells. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1229-8.
Franz, C. M., and P.-H. Puech. Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cell. Mol. Bioeng. 1:289–300, 2008. doi:10.1007/s12195-008-0037-3.
Grainger, S. J., and A. J. Putnam. Mechanical and chemical signaling in angiogenesis. Stud. Mechanobiol. Tissue Eng. Biomater. 12(12):185–209, 2013. doi:10.1007/978-3-642-30856-7.
Haase, K., A. E. Pelling, and K. Haase. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12:20140970, 2015.
Hayashi, K. Tensile properties and local stiffness of cells. In: Mechanics of Biological Tissue, edited by G. A. Holzapfel and R. W. Ogden. Berlin, Heidelberg: Springer, 2006, pp. 137–152.
Hou, H. W., W. C. Lee, M. C. Leong, S. Sonam, S. R. K. Vedula, and C. T. Lim. Microfluidics for applications in cell mechanics and mechanobiology. Cell. Mol. Bioeng. 4:591–602, 2011. doi:10.1007/s12195-011-0209-4.
Hsiai, T. K., et al. Endothelial cell dynamics under pulsating flows: significance of high versus low shear stress slew rates (∂τ/∂t). Ann. Biomed. Eng. 30:646–656, 2002.
Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91:877–887, 2002.
Malek, A. M., R. Ahlquist, G. H. Gibbons, V. J. Dzau, and S. Izumo. A cone-plate apparatus for the in vitro biochemical and molecular analysis of the effect of shear stress on adherent cells. Methods Cell Sci. 17:165–176, 1995.
McCann, J. A., S. D. Peterson, M. W. Plesniak, T. J. Webster, and K. M. Haberstroh. Non-uniform flow behavior in a parallel plate flow chamber alters endothelial cell responses. Ann. Biomed. Eng. 33:328–336, 2005.
Pesen, D., and J. H. Hoh. Micromechanical architecture of the endothelial cell cortex. Biophys. J . 88:670–679, 2005.
Plint, M. A., and L. Boswirth. Fluid Mechanics: A Laboratory Course. London: Charles Griffin & Company Limited, 1978.
Prado, C. M., S. G. Ramos, J. Elias, and M. A. Rossi. Turbulent blood flow plays an essential localizing role in the development of atherosclerotic lesions in experimentally induced hypercholesterolaemia in rats. Int. J. Exp. Pathol. 89:72–80, 2008.
Roduit, C., S. Sekatski, G. Dietler, S. Catsicas, F. Lafont, and S. Kasas. Stiffness tomography by atomic force microscopy. Biophys. J. 97:674–677, 2009. doi:10.1016/j.bpj.2009.05.010.
Romet-Lemonne, G., and A. Jégou. Mechanotransduction down to individual actin filaments. Eur. J. Cell Biol. 92:333–338, 2013. doi:10.1016/j.ejcb.2013.10.011.
Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.
Shankaran, H., and S. Neelamegham. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys. J. 80:2631–2648, 2001.
Stroka, K. M., and H. Aranda-Espinoza. Effects of morphology vs. cell–cell interactions on endothelial cell stiffness. Cell. Mol. Bioeng. 4:9–27, 2011. doi:10.1007/s12195-010-0142-y.
Sun, Y., C. S. Chen, and J. Fu. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41:519–542, 2012.
Suresh, S. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J. Mater. Res. 21:1871–1877, 2006.
Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo. Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Ann. Biomed. Eng. 33:963–971, 2005.
Traub, O., and B. C. Berk. Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18:677–685, 1998.
Van der Meer, A. D., A. A. Poot, J. Feijen, and I. Vermes. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4:1–5, 2010.
Vargas-Pinto, R., H. Gong, A. Vahabikashi, and M. Johnson. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys. J. 105:300–309, 2013. doi:10.1016/j.bpj.2013.05.034.
Acknowledgments
Andrew K. Wong, Pierre LLanos, Nickolas Boroda are the recipients of the Paul Saueracker Summer Research Fellowship at Hofstra University. We would like to acknowledge Dr. Shahin Rafii for providing HUVECs, and Dr. Nicholas Merna for critical review of the manuscript.
Conflict of Interest
Andrew K. Wong, Pierre LLanos, Nickolas Boroda, Seth R. Rosenberg, and Sina Y. Rabbany declare they have no conflicts of interest.
Ethical Statements
No human subjects or animal studies were used by the authors for this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Michael R. King oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Wong, A.K., LLanos, P., Boroda, N. et al. A Parallel-Plate Flow Chamber for Mechanical Characterization of Endothelial Cells Exposed to Laminar Shear Stress. Cel. Mol. Bioeng. 9, 127–138 (2016). https://doi.org/10.1007/s12195-015-0424-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12195-015-0424-5
Keywords
- Atomic force microscopy
- Cone-and-plate viscometer
- Actin remodeling