Cellular and Molecular Bioengineering

, Volume 9, Issue 1, pp 55–64 | Cite as

Effects of Intermittent and Incremental Cyclic Stretch on ERK Signaling and Collagen Production in Engineered Tissue

  • Jillian B. Schmidt
  • Kelley Chen
  • Robert T. TranquilloEmail author


Intermittent cyclic stretching and incrementally increasing strain amplitude cyclic stretching were explored to overcome the reported adaptation of fibroblasts in response to constant amplitude cyclic stretching, with the goals of accelerating collagen production and understanding the underlying cell signaling. The effects of constant amplitude, intermittent, and incremental cyclic stretching regimens were investigated for dermal fibroblasts entrapped in a fibrin gel by monitoring the extracellular signal-regulated kinase (ERK1/2) and p38 pathways, collagen transcription, and finally the deposited collagen protein. Activation of ERK1/2, which has been shown to be necessary for stretch-induced collagen transcription, was maximal at 15 min and decayed by 1 h. ERK1/2 was reactivated by an additional onset of stretching or by an increment in the strain amplitude 6 h after the initial stimulus, which was approximately the lifetime of activated p38, a known ERK1/2 inhibitor. While both intermittent and incremental regimens reactivated ERK1/2, only incremental stretching increased collagen production compared to samples stretched with constant amplitude, resulting in a 37% increase in collagen per cell after 2 weeks. This suggests that a regimen with small, frequent increments in strain amplitude is optimal for this system and should be used in bioreactors for engineered tissues requiring high collagen content.


Fibrin Fibroblast Mitogen activated protein kinase p38 Mechanical conditioning 



Analysis of variance


Collagen Iα1/collagen IIIα1




Extracellular signal-regulated kinase 1/2


Mitogen-activated protein kinase


Phosphate buffered saline


Sodium dodecyl sulfate polyacrylamide gel electrophoresis


Tris-buffered saline



The authors thank Naomi Ferguson, Sandra Johnson, Jay Reimer, Dr. Colleen Witzenburg, and Dr. M. Cristine Charlesworth for technical assistance and Kiley Schmidt for providing illustrations. Nanoimmunoassay was performed in the Mayo Clinic Proteomics Core. This study was funded by a National Science Foundation Graduate Research Fellowship (to J.B.S) and National Institutes of Health/National Heart, Lung, and Blood Institute award HL107572 (to R.T.T.).

Conflict of interest

Jillian B. Schmidt, Kelley Chen, and Robert T. Tranquillo declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Supplementary material

12195_2015_415_MOESM1_ESM.tif (1.9 mb)
Supplemental Fig. 1 Chemiluminescence intensity vs. isoelectric point for static (blue) and 5% continuously stretched (green) samples at 15 min. Peak identification was validated with HeLa control lysates and isoform specific antibodies. Supplementary material 1 (TIFF 1910 kb)
12195_2015_415_MOESM2_ESM.tif (4.5 mb)
Supplemental Fig. 2 Representative Western blots for phosphorylated and total p38 in static and continuously stretched (5%) samples at 15 min, 1, 3, and 6 h. Supplementary material 2 (TIFF 4576 kb)


  1. 1.
    Albro, M. B., N. O. Chahine, R. Li, K. Yeager, C. T. Hung, and G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 41:3152–3157, 2008.CrossRefGoogle Scholar
  2. 2.
    Berry, C. C., J. C. Shelton, D. L. Bader, and D. A. Lee. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 9:613–624, 2003.CrossRefGoogle Scholar
  3. 3.
    Canty, E. G., and K. E. Kadler. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci. 118:1341–1353, 2005.CrossRefGoogle Scholar
  4. 4.
    Chahine, N. O., M. B. Albro, E. G. Lima, V. I. Wei, C. R. Dubois, C. T. Hung, and G. A. Ateshian. Effect of dynamic loading on the transport of solutes into agarose hydrogels. Biophys. J. 97:968–975, 2009.CrossRefGoogle Scholar
  5. 5.
    Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397, 2007.CrossRefGoogle Scholar
  6. 6.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. 66A:550–561, 2003.CrossRefGoogle Scholar
  7. 7.
    Jansen, J. H., F. A. Weyts, I. Westbroek, H. Jahr, H. Chiba, H. A. Pols, J. A. Verhaar, J. P. van Leeuwen, and H. Weinans. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. J. Cell. Biochem. 93:542–551, 2004.CrossRefGoogle Scholar
  8. 8.
    Kim, S. G., T. Akaike, T. Sasagaw, Y. Atomi, and H. Kurosawa. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct. Funct. 27:139–144, 2002.CrossRefGoogle Scholar
  9. 9.
    Mol, A., N. J. B. Driessen, M. C. M. Rutten, S. P. Hoerstrup, C. V. C. Bouten, and F. P. T. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33:1778–1788, 2005.CrossRefGoogle Scholar
  10. 10.
    Neidert, M. R., E. S. Lee, T. R. Oegema, and R. T. Tranquillo. Enhanced fibrin remodeling in vitro with TGF-beta 1, insulin and plasmin for improved tissue-equivalents. Biomaterials 23:3717–3731, 2002.CrossRefGoogle Scholar
  11. 11.
    Nishimura, K., P. Blume, S. Ohgi, and B. E. Sumpio. Effect of different frequencies of tensile strain on human dermal fibroblast proliferation and survival. Wound Repair. Regen. 15:646–656, 2007.CrossRefGoogle Scholar
  12. 12.
    O’Neill, R. A., A. Bhamidipati, X. Bi, D. Deb-Basu, L. Cahill, J. Ferrante, E. Gentalen, M. Glazer, J. Gossett, K. Hacker, C. Kirby, J. Knittle, R. Loder, C. Mastroieni, M. Maclaren, T. Mills, U. Nguyen, N. Parker, A. Rice, D. Roach, D. Suich, D. Voehringer, K. Voss, J. Yang, T. Yang, and P. B. Vander. Horn. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc. Natl. Acad. Sci. USA 103:16153–16158, 2006.CrossRefGoogle Scholar
  13. 13.
    Papakrivopoulou, J., G. E. Lindahl, J. E. Bishop, and G. J. Laurent. Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen alpha1(I) gene expression in cardiac fibroblasts. Cardiovasc. Res. 61:736–744, 2004.CrossRefGoogle Scholar
  14. 14.
    Paxton, J. Z., P. Hagerty, J. J. Andrick, and K. Baar. Optimizing an intermittent stretch paradigm using ERK1/2 phosphorylation results in increased collagen synthesis in engineered ligaments. Tissue Eng. Part A 18:277–284, 2012.CrossRefGoogle Scholar
  15. 15.
    Raghupathy, R., C. Witzenburg, S. P. Lake, E. A. Sander, and V. H. Barocas. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133:091011, 2011.CrossRefGoogle Scholar
  16. 16.
    Rubbens, M. P., A. Mol, R. A. Boerboom, R. A. Bank, F. P. Baaijens, and C. V. Bouten. Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue. Tissue Eng. Part A 15:999–1008, 2009.CrossRefGoogle Scholar
  17. 17.
    Ruberti, J. W., and N. J. Hallab. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336:483–489, 2005.CrossRefGoogle Scholar
  18. 18.
    Rubin, J., T. C. Murphy, X. Fan, M. Goldschmidt, and W. R. Taylor. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J. Bone Miner. Res. 17:1452–1460, 2002.CrossRefGoogle Scholar
  19. 19.
    Solan, A., S. L. Dahl, and L. E. Niklason. Effects of mechanical stretch on collagen and cross-linking in engineered blood vessels. Cell Transplant. 18:915–921, 2009.CrossRefGoogle Scholar
  20. 20.
    Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.CrossRefGoogle Scholar
  21. 21.
    Stekelenburg, M., M. C. Rutten, L. H. Snoeckx, and F. P. Baaijens. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng. Part A 15:1081–1089, 2009.CrossRefGoogle Scholar
  22. 22.
    Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.CrossRefGoogle Scholar
  23. 23.
    Syedain, Z., L. Meier, J. Reimer, and R. Tranquillo. Tubular heart valves from decellularized engineered tissue. Ann. Biomed. Eng. 41:2645–2654, 2013.CrossRefGoogle Scholar
  24. 24.
    Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.CrossRefGoogle Scholar
  25. 25.
    Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105:6537–6542, 2008.CrossRefGoogle Scholar
  26. 26.
    Van Geemen, D., A. Driessen-Mol, F. P. T. Baaigens, and C. Bouten. Understanding strain-induced collagen matrix development in engineered cardiovascular tissues from gene expression profiles. Cell Tissue Res. 352:727–737, 2013.CrossRefGoogle Scholar
  27. 27.
    Weinbaum, J., J. Schmidt, and R. Tranquillo. Combating adaptation to cyclic stretching by prolonging activation of extracellular signal-regulated kinase. Cell. Mol. Bioeng. 6:279–286, 2013.CrossRefGoogle Scholar
  28. 28.
    Williams, C., S. L. Johnson, P. S. Robinson, and R. T. Tranquillo. Cell sourcing and culture conditions for fibrin-based valve constructs. Tissue Eng. 12:1489–1502, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Jillian B. Schmidt
    • 1
  • Kelley Chen
    • 2
  • Robert T. Tranquillo
    • 1
    • 2
    Email author
  1. 1.Department of Chemical Engineering & Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations