Advertisement

Cellular and Molecular Bioengineering

, Volume 8, Issue 3, pp 383–403 | Cite as

Quantification of VEGFRs, NRP1, and PDGFRs on Endothelial Cells and Fibroblasts Reveals Serum, Intra-Family Ligand, and Cross-Family Ligand Regulation

  • Si Chen
  • Xinyi Guo
  • Osazomon Imarenezor
  • P. I. Imoukhuede
Article

Abstract

Computational modeling of angiogenesis is limited by a lack of experimental data on angiogenic receptor levels. Recent receptor profiling quantified vascular endothelial growth factor receptors (VEGFRs); however data on other angiogenic receptors, such as platelet derived growth factor receptors (PDGFRs), are also necessary for the development of an accurate angiogenesis model. Here, we establish conditions for membrane PDGFR quantification. Additionally, we determine how several environmental conditions control membrane PDGFR levels on human dermal fibroblasts. We demonstrate that membrane PDGFRβ concentrations are negatively correlated with both media serum concentration and cell growth rate, in vitro. We also show VEGF-A165-mediated downregulation of membrane PDGFRα (~25%) and PDGFRβ (~30%), following a 24-h treatment. This supports the idea that VEGF-A165 acts independently of VEGFRs to signal through PDGFRα and PDGFRβ. We observe that PDGF-AA and PDGF-AB downregulate membrane PDGFRα by up to 55 and 75%, respectively, while having little to no effect on PDGFRβ or NRP1. We observe that PDGF-BB effects both PDGFRs and NRP1: membrane PDGFRα and PDGFRβ were downregulated by up to 70 and 90%, respectively, whereas membrane NRP1 was upregulated by up to 40%. These data provide the necessary insight to accurately represent PDGFRs in angiogenesis models, while offering new insight into the regulation of membrane PDGFRs.

Keywords

Flow cytometry Cell-by-cell Angiogenesis Fibroblasts Endothelial cells Tyrosine kinase receptors 

Abbreviations

VEGFR

Vascular endothelial growth factor receptor

PDGFR

Platelet derived growth factor receptor

NRP

Neuropilin-1

FGF

Fibroblast growth factor

TGF

Transforming growth factor

PAD

Peripheral artery disease

qFlow

Quantitative flow

HDF

Human dermal fibroblasts

HUVEC

Human umbilical vein endothelial cells

FBS

Fetal bovine serum

DMSO

Dimethyl sulfoxide

FGM-2

Fibroblasts growth medium-2

EGM-2

Endothelial cell growth medium-2

rhFGF-B

Human recombinant basic fibroblast growth factor

GA-1000

Gentamicin and amphotericin diluted at a 11000 ratio

DMEM

Dulbecco’s modified eagle medium

PES

Polyethersulfone

Notes

Acknowledgments

We would like to thank the American Cancer Society, Illinois Division Basic Research Grant, as well as the National Cancer Institute Grant for funding support. We would like to thank Audra Storm, Brendan Mathias, and Dipen Kumar for assistance with experiments, and Jared Weddell, Spencer Mamer, and Ali Ansari for insightful discussion. We also thank Marinos Kalafatis for careful and critical reading of the manuscript.

Conflict of interest

Si Chen, Xinyi Guo, Osazomon Imarenezor and PI Imoukhuede declare that they have no conflicts of interest.

Ethical Standards

No human studies or animal studies were carried out by the authors for this article.

Supplementary material

12195_2015_411_MOESM1_ESM.tif (306 kb)
Supplementary material 1 (TIFF 306 kb)
12195_2015_411_MOESM2_ESM.tif (167 kb)
Supplementary material 2 (TIFF 167 kb)
12195_2015_411_MOESM3_ESM.tif (704 kb)
Supplementary material 3 (TIFF 704 kb)

References

  1. 1.
    Anderson, S. M., B. Shergill, Z. T. Barry, E. Manousiouthakis, T. T. Chen, E. Botvinick, M. O. Platt, M. L. Iruela-Arispe, and T. Segura. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integr. Biol. (Camb) 3:887–896, 2011.Google Scholar
  2. 2.
    Andrae, J., R. Gallini, and C. Betsholtz. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22:1276–1312, 2008.Google Scholar
  3. 3.
    Arai, F., A. Hirao, M. Ohmura, H. Sato, S. Matsuoka, K. Takubo, K. Ito, G. Y. Koh, and T. Suda. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161, 2004.Google Scholar
  4. 4.
    Augustin, H. G., G. Y. Koh, G. Thurston, and K. Alitalo. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10:165–177, 2009.Google Scholar
  5. 5.
    Ball, S. G., C. A. Shuttleworth, and C. M. Kielty. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J. Cell Biol. 177:489–500, 2007.Google Scholar
  6. 6.
    Bar, R. S. Interactions of insulin and insulin-like growth factors (IGF) with endothelial cells. Ann. NY Acad. Sci. 401:150–162, 1982.Google Scholar
  7. 7.
    Barleon, B., S. Sozzani, D. Zhou, H. A. Weich, A. Mantovani, and D. Marmé. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343, 1996.Google Scholar
  8. 8.
    Battegay, E. J., J. Rupp, L. Iruela-Arispe, E. H. Sage, and M. Pech. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J. Cell Biol. 125:917–928, 1994.Google Scholar
  9. 9.
    Beitz, J. G., I. S. Kim, P. Calabresi, and A. R. Frackelton. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 88:2021–2025, 1991.Google Scholar
  10. 10.
    Benjamin, L. E., D. Golijanin, A. Itin, D. Pode, and E. Keshet. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103:159–165, 1999.Google Scholar
  11. 11.
    Benjamin, L. E., I. Hemo, and E. Keshet. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125:1591–1598, 1998.Google Scholar
  12. 12.
    Bentley, K., H. Gerhardt, and P. A. Bates. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initalisation. J. Theor. Biol. 250:25–36, 2008.Google Scholar
  13. 13.
    Bentley, K., G. Mariggi, H. Gerhardt, and P. A. Bates. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput. Biol. 5:e1000549, 2009.Google Scholar
  14. 14.
    Bergers, G., S. Song, N. Meyer-Morse, E. Bergsland, and D. Hanahan. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 111:1287–1295, 2003.Google Scholar
  15. 15.
    Betsholtz, C., L. Karlsson, and P. Lindahl. Developmental roles of platelet-derived growth factors. Bioessays 23:494–507, 2001.Google Scholar
  16. 16.
    Boström, H., K. Willetts, M. Pekny, P. Levéen, P. Lindahl, H. Hedstrand, M. Pekna, M. Hellström, S. Gebre-Medhin, M. Schalling, M. Nilsson, S. Kurland, J. Törnell, J. K. Heath, and C. Betsholtz. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873, 1996.Google Scholar
  17. 17.
    Bowen-Pope, D. F., C. E. Hart, and R. A. Seifert. Sera and conditioned media contain different isoforms of platelet-derived growth factor (PDGF) which bind to different classes of PDGF receptor. J. Biol. Chem. 264:2502–2508, 1989.Google Scholar
  18. 18.
    Brown, L. F., B. Berse, R. W. Jackman, K. Tognazzi, A. J. Guidi, H. F. Dvorak, D. R. Senger, J. L. Connolly, and S. J. Schnitt. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum. Pathol. 26:86–91, 1995.Google Scholar
  19. 19.
    Brunner, D., J. Frank, H. Appl, H. Schöffl, W. Pfaller, and G. Gstraunthaler. Serum-free cell culture: the serum-free media interactive online database. ALTEX 27:53–62, 2010.Google Scholar
  20. 20.
    Burrell, R. A., N. McGranahan, J. Bartek, and C. Swanton. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345, 2013.Google Scholar
  21. 21.
    Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6:389–395, 2000.Google Scholar
  22. 22.
    Carmeliet, P., and D. Collen. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney Int. 53:1519–1549, 1998.Google Scholar
  23. 23.
    Casanovas, O., D. J. Hicklin, G. Bergers, and D. Hanahan. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309, 2005.Google Scholar
  24. 24.
    Chen, S., P. Gupta, G. Conard, J. C. Weddell, J. Parkin, W. Woods, and P. I. Imoukhuede. Towards clinical application: Establishing in vitro standards for qFlow cytometry-based profiling of receptors In Revision.Google Scholar
  25. 25.
    Cirit, M., and J. M. Haugh. Data-driven modelling of receptor tyrosine kinase signalling networks quantifies receptor-specific potencies of PI3 K- and Ras-dependent ERK activation. Biochem. J. 441:77–85, 2012.Google Scholar
  26. 26.
    Claesson-Welsh, L. Signal transduction by the PDGF receptors. Prog. Growth Factor Res. 5:37–54, 1994.Google Scholar
  27. 27.
    Dejana, E. Endothelial cell-cell junctions: happy together. Nat. Rev. Mol. Cell Biol. 5:261–270, 2004.Google Scholar
  28. 28.
    Dong, J., J. Grunstein, M. Tejada, F. Peale, G. Frantz, W.-C. Liang, W. Bai, L. Yu, J. Kowalski, X. Liang, G. Fuh, H.-P. Gerber, and N. Ferrara. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23:2800–2810, 2004.Google Scholar
  29. 29.
    Donovan, J., X. Shiwen, J. Norman, and D. Abraham. Platelet-derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis Tissue Repair 6:10, 2013.Google Scholar
  30. 30.
    Ejiri, H., T. Nomura, M. Hasegawa, C. Tatsumi, M. Imai, S. Sakakibara, and H. Terashi. Use of synthetic serum-free medium for culture of human dermal fibroblasts to establish an experimental system similar to living dermis. Cytotechnology 67(3):507–514, 2014.Google Scholar
  31. 31.
    Erber, R., A. Thurnher, A. D. Katsen, G. Groth, H. Kerger, H.-P. Hammes, M. D. Menger, A. Ullrich, and P. Vajkoczy. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 18:338–340, 2004.Google Scholar
  32. 32.
    Escobedo, J. A., S. Navankasatussas, L. S. Cousens, S. R. Coughlin, G. I. Bell, and L. T. Williams. A common PDGF receptor is activated by homodimeric A and B forms of PDGF. Science 240:1532–1534, 1988.Google Scholar
  33. 33.
    Fantin, A., J. M. Vieira, G. Gestri, L. Denti, Q. Schwarz, S. Prykhozhij, F. Peri, S. W. Wilson, and C. Ruhrberg. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:829–840, 2010.Google Scholar
  34. 34.
    Finley, S. D., L.-H. Chu, and A. S. Popel. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Today: Drug Discov., 2014; (00).Google Scholar
  35. 35.
    Finley, S. D., M. O. Engel-Stefanini, P. I. Imoukhuede, and A. S. Popel. Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst Biol 5(1):193, 2011.Google Scholar
  36. 36.
    Forsberg, K., I. Valyi-Nagy, C. H. Heldin, M. Herlyn, and B. Westermark. Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc. Natl. Acad. Sci. 90:393–397, 1993.Google Scholar
  37. 37.
    Fredriksson, L., H. Li, and U. Eriksson. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 15:197–204, 2004.Google Scholar
  38. 38.
    Gabhann, F. Mac, and A. S. Popel. Systems biology of vascular endothelial growth factors. Microcirculation 15:715–738, 2008.Google Scholar
  39. 39.
    Gough, A. H., N. Chen, T. Y. Shun, T. R. Lezon, R. C. Boltz, C. E. Reese, J. Wagner, L. A. Vernetti, J. R. Grandis, A. V. Lee, A. M. Stern, M. E. Schurdak, and D. L. Taylor. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery. PLoS One 9:e102678, 2014.Google Scholar
  40. 40.
    Greenberg, J. I., and D. A. Cheresh. VEGF as an inhibitor of tumor vessel maturation: implications for cancer therapy. Expert Opin. Biol. Ther. 9:1347–1356, 2009.Google Scholar
  41. 41.
    Greenberg, J. I., D. J. Shields, S. G. Barillas, L. M. Acevedo, E. Murphy, J. Huang, L. Scheppke, C. Stockmann, R. S. Johnson, N. Angle, and D. A. Cheresh. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813, 2008.Google Scholar
  42. 42.
    Greenhalgh, D. G., K. H. Sprugel, M. J. Murray, and R. Ross. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am. J. Pathol. 136:1235–1246, 1990.Google Scholar
  43. 43.
    Guaiquil, V. H., S. Swendeman, W. Zhou, P. Guaiquil, G. Weskamp, J. W. Bartsch, and C. P. Blobel. ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J. Mol. Med. (Berl) 88:497–505, 2010.Google Scholar
  44. 44.
    Hammacher, A., K. Mellström, C. H. Heldin, and B. Westermark. Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. EMBO J. 8:2489–2495, 1989.Google Scholar
  45. 45.
    Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.Google Scholar
  46. 46.
    Hart, C. E., J. W. Forstrom, J. D. Kelly, R. A. Seifert, R. A. Smith, R. Ross, M. J. Murray, and D. F. Bowen-Pope. Two classes of PDGF receptor recognize different isoforms of PDGF. Science 240:1529–1531, 1988.Google Scholar
  47. 47.
    He, B., R. Baird, R. Butera, A. Datta, S. George, B. Hecht, A. Hero, G. Lazzi, R. C. Lee, J. Liang, M. Neuman, G. C. Y. Peng, E. J. Perreault, M. Ramasubramanian, M. D. Wang, J. Wikswo, G.-Z. Yang, and Y.-T. Zhang. Grand challenges in interfacing engineering with life sciences and medicine. IEEE Trans. Biomed. Eng. 60:589–598, 2013.Google Scholar
  48. 48.
    Heldin, C.-H. Targeting the PDGF signaling pathway in tumor treatment. Cell Commun. Signal. 11:97, 2013.Google Scholar
  49. 49.
    Heldin, C.-H., A. Östman, and L. Rönnstrand. Signal transduction via platelet-derived growth factor receptors. Biochim. Biophys. Acta 1378:F79–F113, 1998.Google Scholar
  50. 50.
    Heldin, C. H., A. Wasteson, and B. Westermark. Platelet-derived growth factor. Mol. Cell. Endocrinol. 39:169–187, 1985.Google Scholar
  51. 51.
    Heldin, C. H., and B. Westermark. Platelet-derived growth factor: mechanism of action and possible in vivo function. Cell Regul. 1:555–566, 1990.Google Scholar
  52. 52.
    Heldin, C. H., and B. Westermark. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283–1316, 1999.Google Scholar
  53. 53.
    Heldin, C. H., B. Westermark, and A. Wasteson. Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc. Natl. Acad. Sci. USA 78:3664–3668, 1981.Google Scholar
  54. 54.
    Ichiki, Y., E. Smith, E. C. LeRoy, and M. Trojanowska. Different effects of basic fibroblast growth factor and transforming growth factor-beta on the two platelet-derived growth factor receptors’ expression in scleroderma and healthy human dermal fibroblasts. J. Invest. Dermatol. 104:124–127, 1995.Google Scholar
  55. 55.
    Imoukhuede, P. I., A. O. Dokun, B. H. Annex, and A. S. Popel. Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am. J. Physiol. Heart. Circ. Physiol. 304:H1085–H1093, 2013.Google Scholar
  56. 56.
    Imoukhuede, P. I., and A. S. Popel. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 317:955–965, 2011.Google Scholar
  57. 57.
    Imoukhuede, P. I., and A. S. Popel. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 7:e44791, 2012.Google Scholar
  58. 58.
    Imoukhuede, P. I., and A. S. Popel. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 3:225–244, 2014.Google Scholar
  59. 59.
    Jakobsson, L., C. A. Franco, K. Bentley, R. T. Collins, B. Ponsioen, I. M. Aspalter, I. Rosewell, M. Busse, G. Thurston, A. Medvinsky, S. Schulte-Merker, and H. Gerhardt. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12:943–953, 2010.Google Scholar
  60. 60.
    Ji, J. W., F. Mac Gabhann, and A. S. Popel. Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 293:H3740–H3749, 2007.Google Scholar
  61. 61.
    Keegan, P. M., C. L. Wilder, and M. O. Platt. Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Mol. Cell. Biochem. 367:65–72, 2012.Google Scholar
  62. 62.
    Kut, C., F. Mac Gabhann, and A. S. Popel. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 97:978–985, 2007.Google Scholar
  63. 63.
    Levéen, P., M. Pekny, S. Gebre-Medhin, B. Swolin, E. Larsson, and C. Betsholtz. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8:1875–1887, 1994.Google Scholar
  64. 64.
    Li, X., A. Pontén, K. Aase, L. Karlsson, A. Abramsson, M. Uutela, G. Bäckström, M. Hellström, H. Boström, H. Li, P. Soriano, C. Betsholtz, C. H. Heldin, K. Alitalo, A. Ostman, and U. Eriksson. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat. Cell Biol. 2:302–309, 2000.Google Scholar
  65. 65.
    Lieu, C., J. Heymach, M. Overman, H. Tran, and S. Kopetz. Beyond VEGF: inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 17:6130–6139, 2011.Google Scholar
  66. 66.
    Lin, S.-L., F.-C. Chang, C. Schrimpf, Y.-T. Chen, C.-F. Wu, V.-C. Wu, W.-C. Chiang, F. Kuhnert, C. J. Kuo, Y.-M. Chen, K.-D. Wu, T.-J. Tsai, and J. S. Duffield. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178:911–923, 2011.Google Scholar
  67. 67.
    Lindner, V., and M. A. Reidy. Platelet-derived growth factor ligand and receptor expression by large vessel endothelium in vivo. Am. J. Pathol. 146:1488–1497, 1995.Google Scholar
  68. 68.
    Liu, G., A. A. Qutub, P. Vempati, F. Mac Gabhann, and A. S. Popel. Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Model. 8:6, 2011.Google Scholar
  69. 69.
    Lokker, N. A., J. P. O’Hare, A. Barsoumian, J. E. Tomlinson, V. Ramakrishnan, L. J. Fretto, and N. A. Giese. Functional importance of platelet-derived growth factor (PDGF) receptor extracellular immunoglobulin-like domains. Identification of PDGF binding site and neutralizing monoclonal antibodies. J. Biol. Chem. 272:33037–33044, 1997.Google Scholar
  70. 70.
    Lynch, S. E., J. C. Nixon, R. B. Colvin, and H. N. Antoniades. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc. Natl. Acad. Sci. 84:7696–7700, 1987.Google Scholar
  71. 71.
    Mac Gabhann, F., J. W. Ji, and A. S. Popel. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle. J. Appl. Physiol. 102:722–734, 2007.Google Scholar
  72. 72.
    Mac Gabhann, F., A. A. Qutub, B. H. Annex, and A. S. Popel. Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip. Rev. 2:694–707, 2010.Google Scholar
  73. 73.
    Mamer, S. B., M. Kumar, and P. I. Imoukhuede. Novel VEGF-PDGF cross-family binding kinetics revealed through optimized surface plasmon resonance-based assay. In Review*.Google Scholar
  74. 74.
    Matsui, T., J. H. Pierce, T. P. Fleming, J. S. Greenberger, W. J. LaRochelle, M. Ruggiero, and S. A. Aaronson. Independent expression of human alpha or beta platelet-derived growth factor receptor cDNAs in a naive hematopoietic cell leads to functional coupling with mitogenic and chemotactic signaling pathways. Proc. Natl. Acad. Sci. USA 86:8314–8318, 1989.Google Scholar
  75. 75.
    Micke, P., and A. Ostman. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45(Suppl 2):S163–S175, 2004.Google Scholar
  76. 76.
    Morikawa, S., P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain, and D. M. McDonald. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160:985–1000, 2002.Google Scholar
  77. 77.
    Napione, L., S. Pavan, A. Veglio, A. Picco, G. Boffetta, A. Celani, G. Seano, L. Primo, A. Gamba, and F. Bussolino. Unraveling the influence of endothelial cell density on VEGF-A signaling. Blood 119:5599–5607, 2012.Google Scholar
  78. 78.
    Neufeld, G., T. Cohen, S. Gengrinovitch, and Z. Poltorak. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22, 1999.Google Scholar
  79. 79.
    Ostman, A., and C. H. Heldin. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv. Cancer Res. 80:1–38, 2001.Google Scholar
  80. 80.
    Pannu, K. K., E. T. Joe, and S. B. Iyer. Performance evaluation of quantiBRITE phycoerythrin beads. Cytometry 45:250–258, 2001.Google Scholar
  81. 81.
    Park, C. S., I. C. Schneider, and J. M. Haugh. Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J. Biol. Chem. 278:37064–37072, 2003.Google Scholar
  82. 82.
    Paulsson, J., T. Sjöblom, P. Micke, F. Pontén, G. Landberg, C.-H. Heldin, J. Bergh, D. J. Brennan, K. Jirström, and A. Ostman. Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am. J. Pathol. 175:334–341, 2009.Google Scholar
  83. 83.
    Pennock, S., and A. Kazlauskas. Vascular endothelial growth factor A competitively inhibits platelet-derived growth factor (PDGF)-dependent activation of PDGF receptor and subsequent signaling events and cellular responses. Mol. Cell. Biol. 32:1955–1966, 2012.Google Scholar
  84. 84.
    Pierce, G. F., T. A. Mustoe, B. W. Altrock, T. F. Deuel, and A. Thomason. Role of platelet-derived growth factor in wound healing. J. Cell. Biochem. 45:319–365, 1991.Google Scholar
  85. 85.
    Qutub, A. A., F. Mac Gabhann, E. D. Karagiannis, P. Vempati, and A. S. Popel. Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28:14–31, 2009.Google Scholar
  86. 86.
    Qutub, A. A., and A. S. Popel. Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3:13, 2009.Google Scholar
  87. 87.
    Räsänen, K., and A. Vaheri. Activation of fibroblasts in cancer stroma. Exp. Cell Res. 316:2713–2722, 2010.Google Scholar
  88. 88.
    Renner, O., A. Tsimpas, S. Kostin, S. Valable, E. Petit, W. Schaper, and H. H. Marti. Time- and cell type-specific induction of platelet-derived growth factor receptor-β during cerebral ischemia. Mol. Brain Res. 113:44–51, 2003.Google Scholar
  89. 89.
    Robson, M. C., L. G. Phillips, A. Thomason, L. E. Robson, and G. F. Pierce. Platelet-derived growth factor BB for the treatment of chronic pressure ulcers. Lancet 339:23–25, 1992.Google Scholar
  90. 90.
    Rosenkranz, S., and A. Kazlauskas. Evidence for distinct signaling properties and biological responses induced by the PDGF receptor alpha and beta subtypes. Growth Factors 16:201–216, 1999.Google Scholar
  91. 91.
    Roxworthy, B. J., M. T. Johnston, F. T. Lee-Montiel, R. H. Ewoldt, P. I. Imoukhuede, and K. C. Toussaint. Plasmonic optical trapping in biologically relevant media. PLoS One 9:e93929, 2014.Google Scholar
  92. 92.
    Scharpfenecker, M., U. Fiedler, Y. Reiss, and H. G. Augustin. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell Sci. 118:771–780, 2005.Google Scholar
  93. 93.
    Seifert, R. A., C. E. Hart, P. E. Phillips, J. W. Forstrom, R. Ross, M. J. Murray, and D. F. Bowen-Pope. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J. Biol. Chem. 264:8771–8778, 1989.Google Scholar
  94. 94.
    Severinsson, L., L. Claesson-Welsh, and C. H. Heldin. A B-type PDGF receptor lacking most of the intracellular domain escapes degradation after ligand binding. Eur. J. Biochem. 182:679–686, 1989.Google Scholar
  95. 95.
    Shen, W., C. Zhang, M. W. Fannon, K. Forsten-Williams, and J. Zhang. A computational model of FGF-2 binding and HSPG regulation under flow. IEEE Trans. Biomed. Eng. 56:2147–2155, 2009.Google Scholar
  96. 96.
    Shigematsu, S., K. Yamauchi, K. Nakajima, S. Iijima, T. Aizawa, and K. Hashizume. IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr. J. 46(Suppl):S59–S62, 1999.Google Scholar
  97. 97.
    Shweiki, D., A. Itin, D. Soffer, and E. Keshet. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845, 1992.Google Scholar
  98. 98.
    Simm, A., M. Nestler, and V. Hoppe. PDGF-AA, a potent mitogen for cardiac fibroblasts from adult rats. J. Mol. Cell. Cardiol. 29:357–368, 1997.Google Scholar
  99. 99.
    Sorkin, A., B. Westermark, C. H. Heldin, and L. Claesson-Welsh. Effect of receptor kinase inactivation on the rate of internalization and degradation of PDGF and the PDGF beta-receptor. J. Cell Biol. 112:469–478, 1991.Google Scholar
  100. 100.
    Sugimoto, H., T. M. Mundel, M. W. Kieran, and R. Kalluri. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5:1640–1646, 2006.Google Scholar
  101. 101.
    Takahashi, Y., Y. Kitadai, C. D. Bucana, K. R. Cleary, and L. M. Ellis. Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55:3964–3968, 1995.Google Scholar
  102. 102.
    Thurston, G., J. S. Rudge, E. Ioffe, H. Zhou, L. Ross, S. D. Croll, N. Glazer, J. Holash, D. M. McDonald, and G. D. Yancopoulos. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6:460–463, 2000.Google Scholar
  103. 103.
    Tsirakis, G., C. A. Pappa, P. Kanellou, M. A. Stratinaki, A. Xekalou, F. E. Psarakis, G. Sakellaris, A. Alegakis, E. N. Stathopoulos, and M. G. Alexandrakis. Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma. Hematol. Oncol. 30:131–136, 2012.Google Scholar
  104. 104.
    Vempati, P., F. Mac Gabhann, and A. S. Popel. Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS One 5:e11860, 2010.Google Scholar
  105. 105.
    Vempati, P., A. S. Popel, and F. Mac Gabhann. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis. BMC Syst. Biol. 5:59, 2011.Google Scholar
  106. 106.
    Vempati, P., A. S. Popel, and F. Mac Gabhann. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 25:1–19, 2014.Google Scholar
  107. 107.
    Von Tell, D., A. Armulik, and C. Betsholtz. Pericytes and vascular stability. Exp. Cell Res. 312:623–629, 2006.Google Scholar
  108. 108.
    Wang, L., F. Abbasi, A. K. Gaigalas, R. F. Vogt, and G. E. Marti. Discrepancy in measuring CD4 expression on T-lymphocytes using fluorescein conjugates in comparison with unimolar CD4-phycoerythrin conjugates. Cytometry B. Clin. Cytom. 70:410–415, 2006.Google Scholar
  109. 109.
    Weddell, J. C., and P. I. Imoukhuede. Quantitative characterization of cellular membrane-receptor heterogeneity through statistical and computational modeling. PLoS One 9:e97271, 2014.Google Scholar
  110. 110.
    Weskamp, G., K. Mendelson, S. Swendeman, S. Le Gall, Y. Ma, S. Lyman, A. Hinoki, S. Eguchi, V. Guaiquil, K. Horiuchi, and C. P. Blobel. Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ. Res. 106:932–940, 2010.Google Scholar
  111. 111.
    Willett, C. G., Y. Boucher, E. di Tomaso, D. G. Duda, L. L. Munn, R. T. Tong, D. C. Chung, D. V. Sahani, S. P. Kalva, S. V. Kozin, M. Mino, K. S. Cohen, D. T. Scadden, A. C. Hartford, A. J. Fischman, J. W. Clark, D. P. Ryan, A. X. Zhu, L. S. Blaszkowsky, H. X. Chen, P. C. Shellito, G. Y. Lauwers, and R. K. Jain. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med. 10:145–147, 2004.Google Scholar
  112. 112.
    Yamazaki, Y., and T. Morita. Molecular and functional diversity of vascular endothelial growth factors. Mol. Divers. 10:515–527, 2006.Google Scholar
  113. 113.
    Yoshida, A., B. Anand-Apte, and B. R. Zetter. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64, 1996.Google Scholar
  114. 114.
    Zhang, J., R. Cao, Y. Zhang, T. Jia, Y. Cao, and E. Wahlberg. Differential roles of PDGFR-alpha and PDGFR-beta in angiogenesis and vessel stability. FASEB J. 23:153–163, 2009.Google Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Si Chen
    • 1
  • Xinyi Guo
    • 2
  • Osazomon Imarenezor
    • 3
  • P. I. Imoukhuede
    • 1
  1. 1.Bioengineering DepartmentUniversity of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.Department of Molecular and Cellular BiologyUniversity of Illinois at Urbana-ChampaignChampaignUSA
  3. 3.Department of ChemistryUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations