Advertisement

Cellular and Molecular Bioengineering

, Volume 8, Issue 3, pp 404–415 | Cite as

Elastomeric Cell-Laden Nanocomposite Microfibers for Engineering Complex Tissues

  • Charles W. Peak
  • James K. Carrow
  • Ashish Thakur
  • Ankur Singh
  • Akhilesh K. Gaharwar
Article

Abstract

Biomaterials-based three dimensional scaffolds with tunable elasticity hold promise in replacing failed organs resulting from injuries, aging, and diseases by providing a suitable cellular microenvironment to facilitate regeneration of damaged tissues. However, controlled presentation of biological signals with tunable tissue mechanics and architecture remain a bottleneck that needs to be addressed to engineer functional artificial tissues. Nanocomposite hydrogels that promote cells adhesion and demonstrate tunable viscoelastic properties could mimic key properties and structures of native tissue. We have developed elastomeric fiber shaped cellular constructs from poly(ethylene glycol) diacrylate, silicate nanoparticles, and gelatin methacrylate via ionic and covalent crosslinking. By controlling the interactions between nanoparticles and polymers, nanocomposite hydrogels with tunable mechanical and degradation properties are fabricated. By encapsulating multiple cell types in these cellular constructs, we demonstrate materials-based control of cell spreading, survival, and proliferation. As a proof-of-concept, we assembled the hydrogel microfibers to obtain multicellular elastomeric tissue constructs. These elastic microfibers may serve as model systems to explore the effect of mechanical stress on cell–matrix interactions. Moreover, such elastomeric hydrogel fibers can be used to engineer scaffold structures, fabric sheets, bundles, or as building blocks for 3D tissue construction.

Keywords

Nanocomposite hydrogels Nanoparticles Microfibers Cell–matrix interactions Tissue engineering Bioadhesive 

Notes

Acknowledgments

We would like to acknowledge Lauren Cross for hydrogel preparation, and Manish K. Jaiswal for SEM imaging. Ravi G. Patel of Cornell University for establishing focal adhesion protocol. We also like to thank Prof. Roland Kaunas (Texas A&M University) for providing RFP-mosJ cells.

Conflict of interest

Charles W. Peak, James K. Carrow, Ashish Thakur, Ankur Singh, and Akhilesh K. Gaharwar declare that they have no conflicts of interest.

Ethical Standards

No animal or human studies were carried out by the authors for this article.

References

  1. 1.
    Annabi, N., J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, and F. Dehghani. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. B 16(4):371–383, 2010.CrossRefGoogle Scholar
  2. 2.
    Carrow, J. K., and A. K. Gaharwar. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys. 216(3):248, 2015.CrossRefGoogle Scholar
  3. 3.
    Cayrol, F., M. C. Diaz Flaque, T. Fernando, S. N. Yang, H. A. Sterle, M. Bolontrade, M. Amoros, B. Isse, R. N. Farias, H. Ahn, Y. F. Tian, F. Tabbo, A. Singh, G. Inghirami, L. Cerchietti, and G. A. Cremaschi. Integrin alphavbeta3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells. Blood 125(5):841–851, 2015.CrossRefGoogle Scholar
  4. 4.
    Chan, B. K., C. C. Wippich, C.-J. Wu, P. M. Sivasankar, and G. Schmidt. Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol. Biosci. 12(11):1490–1501, 2012.CrossRefGoogle Scholar
  5. 5.
    Chaudhuri, O., S. T. Koshy, C. B. da Cunha, J. W. Shin, C. S. Verbeke, K. H. Allison, and D. J. Mooney. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13(10):970–978, 2014.CrossRefGoogle Scholar
  6. 6.
    Coyer, S. R., A. Singh, D. W. Dumbauld, D. A. Calderwood, S. W. Craig, E. Delamarche, and A. J. García. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 125(21):5110–5123, 2012.CrossRefGoogle Scholar
  7. 7.
    Dumbauld, D. W., T. T. Lee, A. Singh, J. Scrimgeour, C. A. Gersbach, E. A. Zamir, J. Fu, C. S. Chen, J. E. Curtis, and S. W. Craig. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. 110(24):9788–9793, 2013.CrossRefGoogle Scholar
  8. 8.
    Dvir, T., B. P. Timko, D. S. Kohane, and R. Langer. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1):13–22, 2011.CrossRefGoogle Scholar
  9. 9.
    Gaharwar, A. K., R. K. Avery, A. Assmann, A. Paul, G. H. McKinley, A. Khademhosseini, and B. D. Olsen. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8(10):9833–9842, 2014.CrossRefGoogle Scholar
  10. 10.
    Gaharwar, A. K., V. Kishore, C. Rivera, W. Bullock, C. J. Wu, O. Akkus, and G. Schmidt. Physically crosslinked nanocomposites from silicate-crosslinked peo: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol. Biosci. 12(6):779–793, 2012.CrossRefGoogle Scholar
  11. 11.
    Gaharwar, A. K., S. M. Mihaila, A. Swami, A. Patel, S. Sant, R. L. Reis, A. P. Marques, M. E. Gomes, and A. Khademhosseini. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 25(24):3329–3336, 2013.CrossRefGoogle Scholar
  12. 12.
    Gaharwar, A. K., N. A. Peppas, and A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111(3):441–453, 2014.CrossRefGoogle Scholar
  13. 13.
    Gaharwar, A. K., P. J. Schexnailder, A. Dundigalla, J. D. White, C. R. Matos-Pérez, J. L. Cloud, S. Seifert, J. J. Wilker, and G. Schmidt. Highly extensible bio-nanocomposite fibers. Macromol. Rapid Commun. 32(1):50–57, 2011.CrossRefGoogle Scholar
  14. 14.
    Gaharwar, A. K., P. J. Schexnailder, B. P. Kline, and G. Schmidt. Assessment of using Laponite® cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater. 7(2):568–577, 2011.CrossRefGoogle Scholar
  15. 15.
    Giano, M. C., Z. Ibrahim, S. H. Medina, K. A. Sarhane, J. M. Christensen, Y. Yamada, G. Brandacher, and J. P. Schneider. Injectable bioadhesive hydrogels with innate antibacterial properties. Nat. Commun. 5:4095, 2014.CrossRefGoogle Scholar
  16. 16.
    Hern, D. L., and J. A. Hubbell. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J. Biomed. Mater. Res. 39(2):266–276, 1998.CrossRefGoogle Scholar
  17. 17.
    Hoffman, A. S. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 64:18–23, 2012.CrossRefGoogle Scholar
  18. 18.
    Hoffman, A. S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 65(1):10–16, 2013.CrossRefGoogle Scholar
  19. 19.
    Hutson, C. B., J. W. Nichol, H. Aubin, H. Bae, S. Yamanlar, S. Al-Haque, S. T. Koshy, and A. Khademhosseini. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng. A 17(13–14):1713–1723, 2011.CrossRefGoogle Scholar
  20. 20.
    Karimi, A., and M. Navidbakhsh. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Biomed. Eng. Biomed. Tech. 59(6):479–486, 2014.Google Scholar
  21. 21.
    Kerativitayanan, P., J. K. Carrow, and A. K. Gaharwar. Nanomaterials for engineering stem cell responses. Adv. Healthc. Mater. 2015. doi: 10.1002/adhm.201500272.Google Scholar
  22. 22.
    Lee, T. T., J. R. Garcia, J. I. Paez, A. Singh, E. A. Phelps, S. Weis, Z. Shafiq, A. Shekaran, A. Del Campo, and A. J. Garcia. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 14(3):352–360, 2014.CrossRefGoogle Scholar
  23. 23.
    Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101(7):1869–1880, 2001.CrossRefGoogle Scholar
  24. 24.
    Liu, Y., H. Meng, S. Konst, R. Sarmiento, R. Rajachar, and B. P. Lee. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. Acs Appl. Mater. Interfaces 6(19):16982–16992, 2014.CrossRefGoogle Scholar
  25. 25.
    Mellott, M. B., K. Searcy, and M. V. Pishko. Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22(9):929–941, 2001.CrossRefGoogle Scholar
  26. 26.
    Mihaila, S. M., A. K. Gaharwar, R. L. Reis, A. Khademhosseini, A. P. Marques, and M. E. Gomes. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35(33):9087–9099, 2014.CrossRefGoogle Scholar
  27. 27.
    Mooney, D. T., C. L. Mazzoni, C. Breuer, K. McNamara, D. Hern, J. P. Vacanti, and R. Langer. Stabilized polyglycolic acid fibre based tubes for tissue engineering. Biomaterials 17(2):115–124, 1996.CrossRefGoogle Scholar
  28. 28.
    Nguyen, K. T., and J. L. West. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314, 2002.CrossRefGoogle Scholar
  29. 29.
    Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544, 2010.CrossRefGoogle Scholar
  30. 30.
    Patel, R. G., A. Purwada, L. Cerchietti, G. Inghirami, A. Melnick, A. K. Gaharwar, and A. Singh. microscale bioadhesive hydrogel arrays for cell engineering applications. Cell. Mol. Bioeng. 7(3):394–408, 2014.CrossRefGoogle Scholar
  31. 31.
    Peak, C. W., S. Nagar, R. D. Watts, and G. Schmidt. Robust and degradable hydrogels from poly(ethylene glycol) and semi-interpenetrating collagen. Macromolecules 47(18):6408–6417, 2014.CrossRefGoogle Scholar
  32. 32.
    Peak, C. W., J. J. Wilker, and G. Schmidt. A review on tough and sticky hydrogels. Colloid Polym. Sci. 291(9):2031–2047, 2013.CrossRefGoogle Scholar
  33. 33.
    Peppas, N. A., P. Bures, W. Leobandung, and H. Ichikawa. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50(1):27–46, 2000.CrossRefGoogle Scholar
  34. 34.
    Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18(11):1345–1360, 2006.CrossRefGoogle Scholar
  35. 35.
    Peppas, N. A., K. B. Keys, M. Torres-Lugo, and A. M. Lowman. Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62(1–2):81–87, 1999.CrossRefGoogle Scholar
  36. 36.
    Purwada, A., M. K. Jaiswal, H. Ahn, T. Nojima, D. Kitamura, A. K. Gaharwar, L. Cerchietti, and A. Singh. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 63:24–34, 2015.CrossRefGoogle Scholar
  37. 37.
    Qiu, Y., and K. Park. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 64:49–60, 2012.CrossRefGoogle Scholar
  38. 38.
    Santos, M. I., K. Tuzlakoglu, S. Fuchs, M. E. Gomes, K. Peters, R. E. Unger, E. Piskin, R. L. Reis, and C. J. Kirkpatrick. Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29(32):4306–4313, 2008.CrossRefGoogle Scholar
  39. 39.
    Shingleton, W. D., D. J. Hodges, P. Brick, and T. E. Cawston. Collagenase: a key enzyme in collagen turnover. Biochem. Cell Biol. 74(6):759–775, 1996.CrossRefGoogle Scholar
  40. 40.
    Singh, A., and N. A. Peppas. Hydrogels and scaffolds for immunomodulation. Adv. Mater. 26(38):6530–6541, 2014.CrossRefGoogle Scholar
  41. 41.
    Ullm, S., A. Kruger, C. Tondera, T. P. Gebauer, A. T. Neffe, A. Lendlein, F. Jung, and J. Pietzsch. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials 35(37):9755–9766, 2014.CrossRefGoogle Scholar
  42. 42.
    Xavier, J. R., T. Thakur, P. Desai, M. K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, and A. K. Gaharwar. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Charles W. Peak
    • 1
  • James K. Carrow
    • 1
  • Ashish Thakur
    • 1
  • Ankur Singh
    • 2
  • Akhilesh K. Gaharwar
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  3. 3.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations