Skip to main content

Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin

Abstract

The shape of adherent cells is known to be a key determinant of cellular processes such as proliferation, apoptosis, and differentiation. Manipulation of cell shape affects stem cell differentiation, gene expression, and the response of cells to mechanical stimulation. Shape sensing is at least partially due to mechanically-sensitive signaling within focal adhesions (FAs). Therefore, we evaluate the dependence of cellular force generation on cellular geometry by measuring loads across the FA protein vinculin using an engineered Förster Resonance Energy Transfer-based biosensor. To control cellular geometry, vinculin deficient mouse embryonic fibroblasts stably expressing the vinculin sensor were confined to specific shapes of the same area using photopatterning techniques. It was observed that the tension across vinculin increases at the edges of the cells. However, vinculin supporting compressive loads was found in the center of cells, with an increase in compression observed with increasing aspect ratio. This phenomena is consistent with observations of compressive forces directly under the nucleus and supported by our observation of increased nuclear deformation and enhanced apical actin organization, though this is the first time compressive loads across vinculin have been shown to maintain FA assembly. This suggests a new paradigm for mechanosensitivity in adhesion mechanobiology, where the compressive and tensile loads across particular proteins must be considered.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Ai, H. W., J. N. Henderson, S. J. Remington, and R. E. Campbell. Directed evolution of a monomeric, bright and photostable version of clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400:531–540, 2006.

    Article  Google Scholar 

  2. Azioune, A., N. Carpi, Q. Tseng, M. Thery, and M. Piel. Protein micropatterns: a direct printing protocol using deep uvs. Method. Cell Biol. 97:133–146, 2010.

    Article  Google Scholar 

  3. Azioune, A., M. Storch, M. Bornens, M. Thery, and M. Piel. Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640–1642, 2009.

    Article  Google Scholar 

  4. Bhadriraju, K., M. Yang, S. Alom Ruiz, D. Pirone, J. Tan, and C. S. Chen. Activation of rock by rhoa is regulated by cell adhesion, shape, and cytoskeletal tension. Exp. Cell Res. 313:3616–3623, 2007.

    Article  Google Scholar 

  5. Blundell, J. R., and E. M. Terentjev. Buckling of semiflexible filaments under compression. Soft Matter 5:4015–4020, 2009.

    Article  Google Scholar 

  6. Blundell, J. R., and E. M. Terentjev. Semiflexible filaments subject to arbitrary interactions: a metropolis monte carlo approach. Soft Matter 7:3967–3974, 2011.

    Article  Google Scholar 

  7. Burnette, D. T., L. Shao, C. Ott, A. M. Pasapera, R. S. Fischer, M. A. Baird, C. Der Loughian, H. Delanoe-Ayari, M. J. Paszek, M. W. Davidson, E. Betzig, and J. Lippincott-Schwartz. A contractile and counterbalancing adhesion system controls the 3d shape of crawling cells. J. Cell Biol. 205:83–96, 2014.

    Article  Google Scholar 

  8. Carisey, A., R. Tsang, A. M. Greiner, N. Nijenhuis, N. Heath, A. Nazgiewicz, R. Kemkemer, B. Derby, J. Spatz, and C. Ballestrem. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23:271–281, 2013.

    Article  Google Scholar 

  9. Chang, C. W., and S. Kumar. Vinculin tension distributions of individual stress fibers within cell-matrix adhesions. J. Cell Sci. 126:3021–3030, 2013.

    Article  Google Scholar 

  10. Chen, C. S. Mechanotransduction—a field pulling together? J. Cell Sci. 121:3285–3292, 2008.

    Article  Google Scholar 

  11. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.

    Article  Google Scholar 

  12. Chen, H., D. M. Cohen, D. M. Choudhury, N. Kioka, and S. W. Craig. Spatial distribution and functional significance of activated vinculin in living cells. J. Cell Biol. 169:459–470, 2005.

    Article  Google Scholar 

  13. Chen, H., H. L. Puhl, S. V. Koushik, S. S. Vogel, and S. R. Ikeda. Measurement of fret efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J. 91:L39–L41, 2006.

    Article  Google Scholar 

  14. Choi, C. K., M. Vicente-Manzanares, J. Zareno, L. A. Whitmore, A. Mogilner, and A. R. Horwitz. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin ii motor-independent manner. Nat. Cell Biol. 10:1039–1050, 2008.

    Article  Google Scholar 

  15. Davidson, P. M., O. Fromigue, P. J. Marie, V. Hasirci, G. Reiter, and K. Anselme. Topographically induced self-deformation of the nuclei of cells: dependence on cell type and proposed mechanisms. J. Mater. Sci. Mater. Med. 21:939–946, 2010.

    Article  Google Scholar 

  16. del Alamo, J. C., R. Meili, B. Alvarez-Gonzalez, B. Alonso-Latorre, E. Bastounis, R. Firtel, and J. C. Lasheras. Three-dimensional quantification of cellular traction forces and mechanosensing of thin substrata by fourier traction force microscopy. PLoS ONE 8:e69850, 2013.

    Article  Google Scholar 

  17. Dike, L. E., C. S. Chen, M. Mrksich, J. Tien, G. M. Whitesides, and D. E. Ingber. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. Biol. Anim. 35:441–448, 1999.

    Article  Google Scholar 

  18. Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184:481–490, 2009.

    Article  Google Scholar 

  19. Dumbauld, D. W., T. T. Lee, A. Singh, J. Scrimgeour, C. A. Gersbach, E. A. Zamir, J. Fu, C. S. Chen, J. E. Curtis, S. W. Craig, and A. J. Garcia. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. USA 110:9788–9793, 2013.

    Article  Google Scholar 

  20. Evers, T. H., E. M. W. M. van Dongen, A. C. Faesen, E. W. Meijer, and M. Merkx. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 45:13183–13192, 2006.

    Article  Google Scholar 

  21. Franck, C., S. A. Maskarinec, D. A. Tirrell, and G. Ravichandran. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS ONE 6:e17833, 2011.

    Article  Google Scholar 

  22. Gadhari, N., M. Charnley, M. Marelli, J. Brugger, and M. Chiquet. Cell shape-dependent early responses of fibroblasts to cyclic strain. Biochim. Biophys. Acta 3415–25:2013, 1833.

    Google Scholar 

  23. Grashoff, C., B. D. Hoffman, M. D. Brenner, R. Zhou, M. Parsons, M. T. Yang, M. A. McLean, S. G. Sligar, C. S. Chen, T. Ha, and M. A. Schwartz. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266, 2010.

    Article  Google Scholar 

  24. Han, S. J., K. S. Bielawski, L. H. Ting, M. L. Rodriguez, and N. J. Sniadecki. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys. J. 103:640–648, 2012.

    Article  Google Scholar 

  25. Hoffman, B. D., C. Grashoff, and M. A. Schwartz. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323, 2011.

    Article  Google Scholar 

  26. Holle, A. W., X. Tang, D. Vijayraghavan, L. G. Vincent, A. Fuhrmann, Y. S. Choi, J. C. del Alamo, and A. J. Engler. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477, 2013.

    Article  Google Scholar 

  27. Hur, S. S., Y. Zhao, Y. S. Li, E. Botvinick, and S. Chien. Live cells exert 3-dimensional traction forces on their substrata. Cell. Mol. Bioeng. 2:425–436, 2009.

    Article  Google Scholar 

  28. Jain, N., K. V. Iyer, A. Kumar, and G. V. Shivashankar. Cell geometric constraints induce modular gene-expression patterns via redistribution of hdac3 regulated by actomyosin contractility. Proc. Natl. Acad. Sci. USA 110:11349–11354, 2013.

    Article  Google Scholar 

  29. Joosen, L., M. A. Hink, T. W. J. Gadella, and J. Goedhart. Effect of fixation procedures on the fluorescence lifetimes of aequorea victoria derived fluorescent proteins. J. Microsc. 256:166–176, 2014.

    Article  Google Scholar 

  30. Khatau, S. B., C. M. Hale, P. J. Stewart-Hutchinson, M. S. Patel, C. L. Stewart, P. C. Searson, D. Hodzic, and D. Wirtz. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA 106:19017–19022, 2009.

    Article  Google Scholar 

  31. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107:4872–4877, 2010.

    Article  Google Scholar 

  32. Kim, D. H., S. Cho, and D. Wirtz. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J. Cell Sci. 127:2528–2541, 2014.

    Article  Google Scholar 

  33. Kovacs, M., J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin ii. J. Biol. Chem. 279:35557–35563, 2004.

    Article  Google Scholar 

  34. LaCroix, A. S., K. E. Rothenberg, M. E. Berginski, A. N. Urs, and B. D. Hoffman. Construction, imaging, and analysis of fret-based tension sensors in living cells. Methods Cell Biol. 125:161–186, 2015.

    Article  Google Scholar 

  35. Legant, W. R., C. K. Choi, J. S. Miller, L. Shao, L. Gao, E. Betzig, and C. S. Chen. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA 110:881–886, 2013.

    Article  Google Scholar 

  36. Lemmon, C. A., and L. H. Romer. A predictive model of cell traction forces based on cell geometry. Biophys. J. 99:L78–L80, 2010.

    Article  Google Scholar 

  37. Levin, M. Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems 109:243–261, 2012.

    Article  Google Scholar 

  38. Li, Q. S., A. Kumar, E. Makhija, and G. V. Shivashankar. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35:961–969, 2014.

    Article  Google Scholar 

  39. Lou, S. S., A. Diz-Munoz, O. D. Weiner, D. A. Fletcher, and J. A. Theriot. Myosin light chain kinase regulates cell polarization independently of membrane tension or rho kinase. J. Cell Biol. 209:275–288, 2015.

    Article  Google Scholar 

  40. Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno, and S. Narumiya. Signaling from rho to the actin cytoskeleton through protein kinases rock and lim-kinase. Science 285:895–898, 1999.

    Article  Google Scholar 

  41. Majumdar, Z. K., R. Hickerson, H. F. Noller, and R. M. Clegg. Measurements of internal distance changes of the 30 s ribosome using fret with multiple donor-acceptor pairs: quantitative spectroscopic methods. J. Mol. Biol. 351:1123–1145, 2005.

    Article  Google Scholar 

  42. Maskarinec, S. A., C. Franck, D. A. Tirrell, and G. Ravichandran. Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. USA 106:22108–22113, 2009.

    Article  Google Scholar 

  43. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.

    Article  Google Scholar 

  44. Meng, F., and F. Sachs. Orientation-based fret sensor for real-time imaging of cellular forces. J. Cell Sci. 125:743–750, 2012.

    Article  Google Scholar 

  45. Mierke, C. T., P. Kollmannsberger, D. P. Zitterbart, G. Diez, T. M. Koch, S. Marg, W. H. Ziegler, W. H. Goldmann, and B. Fabry. Vinculin facilitates cell invasion into three-dimensional collagen matrices. J. Biol. Chem. 285:13121–13130, 2010.

    Article  Google Scholar 

  46. Nagai, T., K. Ibata, E. S. Park, M. Kubota, K. Mikoshiba, and A. Miyawaki. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20:87–90, 2002.

    Article  Google Scholar 

  47. Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102:11594–11599, 2005.

    Article  Google Scholar 

  48. Oakes, P. W., S. Banerjee, M. C. Marchetti, and M. L. Gardel. Geometry regulates traction stresses in adherent cells. Biophys. J. 107:825–833, 2014.

    Article  Google Scholar 

  49. Paszek, M. J., C. C. DuFort, O. Rossier, R. Bainer, J. K. Mouw, K. Godula, J. E. Hudak, J. N. Lakins, A. C. Wijekoon, L. Cassereau, M. G. Rubashkin, M. J. Magbanua, K. S. Thorn, M. W. Davidson, H. S. Rugo, J. W. Park, D. A. Hammer, G. Giannone, C. R. Bertozzi, and V. M. Weaver. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325, 2014.

    Article  Google Scholar 

  50. Rape, A. D., W. H. Guo, and Y. L. Wang. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32:2043–2051, 2011.

    Article  Google Scholar 

  51. Shao, Y., J. M. Mann, W. Chen, and J. Fu. Global architecture of the f-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr. Biol. (Camb.) 6:300–311, 2014.

    Article  Google Scholar 

  52. Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123:4201–4213, 2010.

    Article  Google Scholar 

  53. Thery, M., A. Pepin, E. Dressaire, Y. Chen, and M. Bornens. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motil. Cytoskeleton 63:341–355, 2006.

    Article  Google Scholar 

  54. Totsukawa, G., Y. Wu, Y. Sasaki, D. J. Hartshorne, Y. Yamakita, S. Yamashiro, and F. Matsumura. Distinct roles of mlck and rock in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol. 164:427–439, 2004.

    Article  Google Scholar 

  55. Versaevel, M., J. B. Braquenier, M. Riaz, T. Grevesse, J. Lantoine, and S. Gabriele. Super-resolution microscopy reveals linc complex recruitment at nuclear indentation sites. Sci. Rep. 4:7362, 2014.

    Article  Google Scholar 

  56. Versaevel, M., T. Grevesse, and S. Gabriele. Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat. Commun. 3:671, 2012.

    Article  Google Scholar 

  57. Vishavkarma, R., S. Raghavan, C. Kuyyamudi, A. Majumder, J. Dhawan and P. A. Pullarkat. Role of actin filaments in correlating nuclear shape and cell spreading. PLoS One 9, 2014.

  58. Wang, N., E. Ostuni, G. M. Whitesides, and D. E. Ingber. Micropatterning tractional forces in living cells. Cell Motil. Cytoskeleton 52:97–106, 2002.

    Article  Google Scholar 

  59. Zaidel-Bar, R., S. Itzkovitz, A. Ma’ayan, R. Iyengar, and B. Geiger. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9:858–867, 2007.

    Article  Google Scholar 

  60. Zamir, E., B. Z. Katz, S. Aota, K. M. Yamada, B. Geiger, and Z. Kam. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112:1655–1669, 1999.

    Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Ben Fabry, Wolfgang Goldman, and Wolfgang Ziegler for providing MEFs; Dr. George Dubay for his assistance with fluorometric data acquisition; The Franz lab for the use of their UV–Vis spectrophotometer; Dr. Nicolas Christoforou for his work creating the initial VinTS lentiviral construct; and Vidya Venkataramanan and Aarti Urs for production of stable cell lines and other technical support. This work was supported by a Searle Scholar Award, a Basil O’Connor Starter Scholar Research Award (March of Dimes Foundation) Award, and National Science Foundation CAREER Award to Dr. Brenton Hoffman; a National Science Foundation Graduate Research Fellowship awarded to Katheryn Rothenberg; and a Grand Challenge Scholar Grant awarded to Shane Neibart.

Conflict of interest

Katheryn E. Rothenberg, Shane S. Neibart, Andrew S. LaCroix, and Brenton D. Hoffman declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenton D. Hoffman.

Additional information

Associate Editor Cynthia A. Reinhart-King oversaw the review of this article.

This article is part of the 2015 Young Innovators Issue.

Dr. Brenton Hoffman is an Assistant Professor in the Department of Biomedical Engineering at Duke University where he is the principal investigator of the Cell and Molecular Mechanobiology Laboratory. He received a B.S. Degree in Chemical Engineering from Lehigh University and a PhD in Chemical and Biomolecular Engineering from the University of Pennsylvania. His thesis work focused on adapting soft matter physics techniques to probe the active mechanics of the cytoskeleton. Then he completed Post-doctoral training in the Cardiovascular Research Center at the University of Virginia, receiving a Post-doctoral Fellowship from the American Heart Association. This work centered on the creation and use of optically-based biosensors that report forces across specific proteins in living cells. Dr. Hoffman has won several prestigious awards, including a Basil O’Connor Starter Scholar Award from the March of Dimes, a Searle Scholar Award, and National Science Foundation CAREER Award. He has published peer-reviewed articles in Nature, Current Biology, PNAS, Angewandte Chemie, Journal of Cell Science, Physical Review Letters, and Biophysical Journal. His current research focuses on the development and use of force-sensitive biosensors to understand the mechanisms cell use to sense, detect, and respond to the cellular microenvironment.

figure a

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rothenberg, K.E., Neibart, S.S., LaCroix, A.S. et al. Controlling Cell Geometry Affects the Spatial Distribution of Load Across Vinculin. Cel. Mol. Bioeng. 8, 364–382 (2015). https://doi.org/10.1007/s12195-015-0404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0404-9

Keywords

  • Micropatterning
  • Mechanotransduction
  • Förster Resonance Energy Transfer
  • Molecular tension sensor
  • Focal adhesion
  • Vinculin