Abstract
Tissue engineering emerges as a viable method to replace cartilage damaged by osteoarthritis or trauma. A key element for cartilage tissue engineering is to elucidate growth factor exposure regimes that enhance cartilage production from multipotent progenitor cells. To address this, we identify growth factor conditions that promote chondrogenesis of human mesenchymal stem cells cultured under static conditions. We identified transient exposure to bone morphogenic protein-2 in the presence of transforming growth factor beta-1 as a viable condition that promotes expression of chondrogenic phenotype for human mesenchymal stem cells seeded onto polycaprolactone scaffolds. We then use this growth factor regime as a proof of concept to test a new shear and perfusion bioreactor. This novel bioreactor design applies shear stress stimulation on the surface of constructs while allowing tissue perfusion. Constructs harvested from the bioreactor after 8 days showed cartilage development primarily near the construct surface exposed to shear stress. By day 14, cells, collagen deposition and proteoglycan deposition is observed throughout the scaffold, indicative of cartilage development.
Similar content being viewed by others
References
Bessa, P. C., M. Casal, and R. L. Reis. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J. Tissue Eng. Regen. Med. 2:1–13, 2008.
Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Design of a high-throughput flow perfusion bioreactor system for tissue engineering. Tissue Eng. Part C 18:817–820, 2012.
Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Eng. Part A 20:2883–2891, 2014.
Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8:807–816, 2002.
DeLise, A. M., L. Fischer, and R. S. Tuan. Cellular interactions and signaling in cartilage development. Osteoarthr. Cartil. 8:309–334, 2000.
Di Federico, E., D. L. Bader, and J. C. Shelton. Design and validation of an in vitro loading system for the combined application of cyclic compression and shear to 3D chondrocytes-seeded agarose constructs. Med. Eng. Phys. 36:534–540, 2014.
Diao, H., J. Wang, C. Shen, S. Xia, T. Guo, L. Dong, C. Zhang, J. Chen, J. Zhao, and J. Zhang. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue Eng. Part A 15:2687–2698, 2009.
Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248, 1982.
Freyria, A. M., S. Courtes, and F. Mallein-Gerin. Differentiation of adult human mesenchymal stem cells: chondrogenic effect of BMP-2. Pathol. Biol. (Paris) 56:326–333, 2008.
Gemmiti, C. V., and R. E. Guldberg. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol. Bioeng. 104:809–820, 2009.
Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell. Biochem. 97:33–44, 2006.
Grogan, S. P., S. Sovani, C. Pauli, J. Chen, A. Hartmann, C. W. Colwell, Jr., M. K. Lotz, and D. D. D’Lima. Effects of perfusion and dynamic loading on human neocartilage formation in alginate hydrogels. Tissue Eng. Part A 18:1784–1792, 2012.
Grunder, T., C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky, J. Mollenhauer, and W. K. Aicher. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr. Cartil. 12:559–567, 2004.
Huang, A. H., N. A. Motlekar, A. Stein, S. L. Diamond, E. M. Shore, and R. L. Mauck. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann. Biomed. Eng. 36:1909–1921, 2008.
Huang, A. H., A. Stein, R. S. Tuan, and R. L. Mauck. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng. Part A 15:3461–3472, 2009.
Ichinose, S., M. Tagami, T. Muneta, and I. Sekiya. Morphological examination during in vitro cartilage formation by human mesenchymal stem cells. Cell Tissue Res. 322:217–226, 2005.
Indrawattana, N., G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 320:914–919, 2004.
Kane, P., R. Frederick, B. Tucker, C. C. Dodson, J. A. Anderson, M. G. Ciccotti, and K. B. Freedman. Surgical restoration/repair of articular cartilage injuries in athletes. Phys Sportsmed. 41:75–86, 2013.
Kwon, S. H., T. J. Lee, J. Park, J. E. Hwang, M. Jin, H. K. Jang, N. S. Hwang, and B. S. Kim. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng. Part A 19:49–58, 2013.
Long, F., and D. M. Ornitz. Development of the endochondral skeleton. Cold Spring Harbor Perspect. Biol. 5:a008334, 2013.
Mabvuure, N., S. Hindocha, and W. S. Khan. The role of bioreactors in cartilage tissue engineering. Curr. Stem Cell Res. Ther. 7:287–292, 2012.
Majumdar, M. K., E. Wang, and E. A. Morris. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J. Cell. Physiol. 189:275–284, 2001.
Martel-Pelletier, J., C. Boileau, J. P. Pelletier, and P. J. Roughley. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22:351–384, 2008.
Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86, 2004.
Mehlhorn, A. T., P. Niemeyer, K. Kaschte, L. Muller, G. Finkenzeller, D. Hartl, N. P. Sudkamp, and H. Schmal. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif. 40:809–823, 2007.
Mikos, A. G., and J. S. Temenof. Formation of highly porous biodegradable scaffolds for tissue engineering. EJ Biotechnol. 3:114–119, 2000.
Mobasheri, A., G. Kalamegam, G. Musumeci, and M. E. Batt. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 78:188–198, 2014.
Mohle, R. B., T. Langemann, M. Haesner, W. Augustin, S. Scholl, T. R. Neu, D. C. Hempel, and H. Horn. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol. Bioeng. 98:747–755, 2007.
Ng, K. W., C. J. O’Conor, L. E. Kugler, J. L. Cook, G. A. Ateshian, and C. T. Hung. Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage. Ann. Biomed. Eng. 39:2491–2500, 2011.
Nishimura, R., K. Hata, K. Ono, K. Amano, Y. Takigawa, M. Wakabayashi, R. Takashima, and T. Yoneda. Regulation of endochondral ossification by transcription factors. Front. Biosci. 17:2657–2666, 2012.
Olsen, B. R., A. M. Reginato, and W. Wang. Bone development. Annu. Rev. Cell Dev. Biol. 16:191–220, 2000.
Pazzano, D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, and L. J. Bonassar. Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16:893–896, 2000.
Pizette, S., and L. Niswander. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev. Biol. 219:237–249, 2000.
Rodrigues, M., L. G. Griffith, and A. Wells. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell. Res. Ther. 1:32, 2010.
Saini, S., and T. M. Wick. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog. 19:510–521, 2003.
Saini, S., and T. M. Wick. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng. 10:825–832, 2004.
Savkovic, V., H. Li, J. K. Seon, M. Hacker, S. Franz, and J. C. Simon. Mesenchymal stem cells in cartilage regeneration. Curr. Stem Cell Res. Ther. 9(6):469–488, 2014.
Schulz, R. M., N. Wustneck, C. C. van Donkelaar, J. C. Shelton, and A. Bader. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Biotechnol. Bioeng. 101:714–728, 2008.
Simon, T. M., and D. W. Jackson. Articular cartilage: injury pathways and treatment options. Sports Med. Arthrosc. 14:146–154, 2006.
Smith, R. L., B. S. Donlon, M. K. Gupta, M. Mohtai, P. Das, D. R. Carter, J. Cooke, G. Gibbons, N. Hutchinson, and D. J. Schurman. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J. Orthop. Res. 13:824–831, 1995.
Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann. Biomed. Eng. 38:2896–2909, 2010.
Vangsness, Jr., C. T., P. R. Kurzweil, and J. R. Lieberman. Restoring articular cartilage in the knee. Am. J. Orthop (Belle Mead NJ) 33:29–34, 2004.
Yang, Y. H., and G. A. Barabino. Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-beta1. Tissue Eng. Part A. 19:2349–2360, 2013.
Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37:1–57, 2009.
Zhao, F., and T. Ma. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91:482–493, 2005.
Zhao, F., R. Chella, and T. Ma. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol. Bioeng. 96:584–595, 2007.
Acknowledgments
We acknowledge the financial support from the University of Alabama at Birmingham, Center for Metabolic Bone Disease–Histomorphometry and Molecular Analysis Core Laboratory for the histology and immunohistochemistry studies.
Conflict of interest
Carlos A. Carmona-Moran and Timothy M. Wick declare that they have no conflict of interest.
Ethical standards
No human and animal studies were carried out by the authors for this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Michael R. King oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Carmona-Moran, C.A., Wick, T.M. Transient Growth Factor Stimulation Improves Chondrogenesis in Static Culture and Under Dynamic Conditions in a Novel Shear and Perfusion Bioreactor. Cel. Mol. Bioeng. 8, 267–277 (2015). https://doi.org/10.1007/s12195-015-0387-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12195-015-0387-6