Skip to main content
Log in

Transient Growth Factor Stimulation Improves Chondrogenesis in Static Culture and Under Dynamic Conditions in a Novel Shear and Perfusion Bioreactor

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Tissue engineering emerges as a viable method to replace cartilage damaged by osteoarthritis or trauma. A key element for cartilage tissue engineering is to elucidate growth factor exposure regimes that enhance cartilage production from multipotent progenitor cells. To address this, we identify growth factor conditions that promote chondrogenesis of human mesenchymal stem cells cultured under static conditions. We identified transient exposure to bone morphogenic protein-2 in the presence of transforming growth factor beta-1 as a viable condition that promotes expression of chondrogenic phenotype for human mesenchymal stem cells seeded onto polycaprolactone scaffolds. We then use this growth factor regime as a proof of concept to test a new shear and perfusion bioreactor. This novel bioreactor design applies shear stress stimulation on the surface of constructs while allowing tissue perfusion. Constructs harvested from the bioreactor after 8 days showed cartilage development primarily near the construct surface exposed to shear stress. By day 14, cells, collagen deposition and proteoglycan deposition is observed throughout the scaffold, indicative of cartilage development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bessa, P. C., M. Casal, and R. L. Reis. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J. Tissue Eng. Regen. Med. 2:1–13, 2008.

    Article  Google Scholar 

  2. Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Design of a high-throughput flow perfusion bioreactor system for tissue engineering. Tissue Eng. Part C 18:817–820, 2012.

    Article  Google Scholar 

  3. Dahlin, R. L., V. V. Meretoja, M. Ni, F. K. Kasper, and A. G. Mikos. Chondrogenic phenotype of articular chondrocytes in monoculture and co-culture with mesenchymal stem cells in flow perfusion. Tissue Eng. Part A 20:2883–2891, 2014.

    Article  Google Scholar 

  4. Davisson, T., R. L. Sah, and A. Ratcliffe. Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng. 8:807–816, 2002.

    Article  Google Scholar 

  5. DeLise, A. M., L. Fischer, and R. S. Tuan. Cellular interactions and signaling in cartilage development. Osteoarthr. Cartil. 8:309–334, 2000.

    Article  Google Scholar 

  6. Di Federico, E., D. L. Bader, and J. C. Shelton. Design and validation of an in vitro loading system for the combined application of cyclic compression and shear to 3D chondrocytes-seeded agarose constructs. Med. Eng. Phys. 36:534–540, 2014.

    Article  Google Scholar 

  7. Diao, H., J. Wang, C. Shen, S. Xia, T. Guo, L. Dong, C. Zhang, J. Chen, J. Zhao, and J. Zhang. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue Eng. Part A 15:2687–2698, 2009.

    Article  Google Scholar 

  8. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248, 1982.

    Article  Google Scholar 

  9. Freyria, A. M., S. Courtes, and F. Mallein-Gerin. Differentiation of adult human mesenchymal stem cells: chondrogenic effect of BMP-2. Pathol. Biol. (Paris) 56:326–333, 2008.

    Article  Google Scholar 

  10. Gemmiti, C. V., and R. E. Guldberg. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol. Bioeng. 104:809–820, 2009.

    Google Scholar 

  11. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell. Biochem. 97:33–44, 2006.

    Article  Google Scholar 

  12. Grogan, S. P., S. Sovani, C. Pauli, J. Chen, A. Hartmann, C. W. Colwell, Jr., M. K. Lotz, and D. D. D’Lima. Effects of perfusion and dynamic loading on human neocartilage formation in alginate hydrogels. Tissue Eng. Part A 18:1784–1792, 2012.

    Article  Google Scholar 

  13. Grunder, T., C. Gaissmaier, J. Fritz, R. Stoop, P. Hortschansky, J. Mollenhauer, and W. K. Aicher. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr. Cartil. 12:559–567, 2004.

    Article  Google Scholar 

  14. Huang, A. H., N. A. Motlekar, A. Stein, S. L. Diamond, E. M. Shore, and R. L. Mauck. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann. Biomed. Eng. 36:1909–1921, 2008.

    Article  Google Scholar 

  15. Huang, A. H., A. Stein, R. S. Tuan, and R. L. Mauck. Transient exposure to transforming growth factor beta 3 improves the mechanical properties of mesenchymal stem cell-laden cartilage constructs in a density-dependent manner. Tissue Eng. Part A 15:3461–3472, 2009.

    Article  Google Scholar 

  16. Ichinose, S., M. Tagami, T. Muneta, and I. Sekiya. Morphological examination during in vitro cartilage formation by human mesenchymal stem cells. Cell Tissue Res. 322:217–226, 2005.

    Article  Google Scholar 

  17. Indrawattana, N., G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 320:914–919, 2004.

    Article  Google Scholar 

  18. Kane, P., R. Frederick, B. Tucker, C. C. Dodson, J. A. Anderson, M. G. Ciccotti, and K. B. Freedman. Surgical restoration/repair of articular cartilage injuries in athletes. Phys Sportsmed. 41:75–86, 2013.

    Article  Google Scholar 

  19. Kwon, S. H., T. J. Lee, J. Park, J. E. Hwang, M. Jin, H. K. Jang, N. S. Hwang, and B. S. Kim. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng. Part A 19:49–58, 2013.

    Article  Google Scholar 

  20. Long, F., and D. M. Ornitz. Development of the endochondral skeleton. Cold Spring Harbor Perspect. Biol. 5:a008334, 2013.

    Article  Google Scholar 

  21. Mabvuure, N., S. Hindocha, and W. S. Khan. The role of bioreactors in cartilage tissue engineering. Curr. Stem Cell Res. Ther. 7:287–292, 2012.

    Article  Google Scholar 

  22. Majumdar, M. K., E. Wang, and E. A. Morris. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J. Cell. Physiol. 189:275–284, 2001.

    Article  Google Scholar 

  23. Martel-Pelletier, J., C. Boileau, J. P. Pelletier, and P. J. Roughley. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 22:351–384, 2008.

    Article  Google Scholar 

  24. Martin, I., D. Wendt, and M. Heberer. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86, 2004.

    Article  Google Scholar 

  25. Mehlhorn, A. T., P. Niemeyer, K. Kaschte, L. Muller, G. Finkenzeller, D. Hartl, N. P. Sudkamp, and H. Schmal. Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif. 40:809–823, 2007.

    Article  Google Scholar 

  26. Mikos, A. G., and J. S. Temenof. Formation of highly porous biodegradable scaffolds for tissue engineering. EJ Biotechnol. 3:114–119, 2000.

    Google Scholar 

  27. Mobasheri, A., G. Kalamegam, G. Musumeci, and M. E. Batt. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 78:188–198, 2014.

    Article  Google Scholar 

  28. Mohle, R. B., T. Langemann, M. Haesner, W. Augustin, S. Scholl, T. R. Neu, D. C. Hempel, and H. Horn. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol. Bioeng. 98:747–755, 2007.

    Article  Google Scholar 

  29. Ng, K. W., C. J. O’Conor, L. E. Kugler, J. L. Cook, G. A. Ateshian, and C. T. Hung. Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage. Ann. Biomed. Eng. 39:2491–2500, 2011.

    Article  Google Scholar 

  30. Nishimura, R., K. Hata, K. Ono, K. Amano, Y. Takigawa, M. Wakabayashi, R. Takashima, and T. Yoneda. Regulation of endochondral ossification by transcription factors. Front. Biosci. 17:2657–2666, 2012.

    Article  Google Scholar 

  31. Olsen, B. R., A. M. Reginato, and W. Wang. Bone development. Annu. Rev. Cell Dev. Biol. 16:191–220, 2000.

    Article  Google Scholar 

  32. Pazzano, D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiasio, J. X. Rulfs, S. S. Kohles, and L. J. Bonassar. Comparison of chondrogensis in static and perfused bioreactor culture. Biotechnol. Prog. 16:893–896, 2000.

    Article  Google Scholar 

  33. Pizette, S., and L. Niswander. BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev. Biol. 219:237–249, 2000.

    Article  Google Scholar 

  34. Rodrigues, M., L. G. Griffith, and A. Wells. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell. Res. Ther. 1:32, 2010.

    Article  Google Scholar 

  35. Saini, S., and T. M. Wick. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol. Prog. 19:510–521, 2003.

    Article  Google Scholar 

  36. Saini, S., and T. M. Wick. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng. 10:825–832, 2004.

    Article  Google Scholar 

  37. Savkovic, V., H. Li, J. K. Seon, M. Hacker, S. Franz, and J. C. Simon. Mesenchymal stem cells in cartilage regeneration. Curr. Stem Cell Res. Ther. 9(6):469–488, 2014.

    Article  Google Scholar 

  38. Schulz, R. M., N. Wustneck, C. C. van Donkelaar, J. C. Shelton, and A. Bader. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs. Biotechnol. Bioeng. 101:714–728, 2008.

    Article  Google Scholar 

  39. Simon, T. M., and D. W. Jackson. Articular cartilage: injury pathways and treatment options. Sports Med. Arthrosc. 14:146–154, 2006.

    Article  Google Scholar 

  40. Smith, R. L., B. S. Donlon, M. K. Gupta, M. Mohtai, P. Das, D. R. Carter, J. Cooke, G. Gibbons, N. Hutchinson, and D. J. Schurman. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J. Orthop. Res. 13:824–831, 1995.

    Article  Google Scholar 

  41. Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-beta3 induced chondrogenic differentiation. Ann. Biomed. Eng. 38:2896–2909, 2010.

    Article  Google Scholar 

  42. Vangsness, Jr., C. T., P. R. Kurzweil, and J. R. Lieberman. Restoring articular cartilage in the knee. Am. J. Orthop (Belle Mead NJ) 33:29–34, 2004.

    Google Scholar 

  43. Yang, Y. H., and G. A. Barabino. Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-beta1. Tissue Eng. Part A. 19:2349–2360, 2013.

    Article  Google Scholar 

  44. Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37:1–57, 2009.

    Article  Google Scholar 

  45. Zhao, F., and T. Ma. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91:482–493, 2005.

    Article  Google Scholar 

  46. Zhao, F., R. Chella, and T. Ma. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol. Bioeng. 96:584–595, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the University of Alabama at Birmingham, Center for Metabolic Bone Disease–Histomorphometry and Molecular Analysis Core Laboratory for the histology and immunohistochemistry studies.

Conflict of interest

Carlos A. Carmona-Moran and Timothy M. Wick declare that they have no conflict of interest.

Ethical standards

No human and animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Wick.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Moran, C.A., Wick, T.M. Transient Growth Factor Stimulation Improves Chondrogenesis in Static Culture and Under Dynamic Conditions in a Novel Shear and Perfusion Bioreactor. Cel. Mol. Bioeng. 8, 267–277 (2015). https://doi.org/10.1007/s12195-015-0387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-015-0387-6

Keywords

Navigation