Substrate Stiffness Affects Human Keratinocyte Colony Formation


Restoration of epidermal organization and function in response to a variety of pathophysiological insults is critically dependent on coordinated keratinocyte migration, proliferation, and stratification during the process of wound healing. These processes are mediated by the reconfiguration of both cell–cell (desmosomes, adherens junctions) and cell–matrix (focal adhesions, hemidesmosomes) junctions and the cytoskeletal filament networks that they serve to interconnect. In this study, we investigated the role of substrate elasticity (stiffness) on keratinocyte colony formation in vitro during the process of nascent epithelial sheet formation as triggered by the calcium switch model of keratinocyte culture. Keratinocytes cultured on pepsin digested type I collagen coated soft (nominal E = 1.2 kPa) polyacrylamide gels embedded with fluorescent microspheres exhibited (i) smaller spread contact areas, (ii) increased migration velocities, and (iii) increased rates of colony formation with more cells per colony than did keratinocytes cultured on stiff (nominal E = 24 kPa) polyacrylamide gels. As assessed by tracking of embedded microsphere displacements, keratinocytes cultured on soft substrates generated large local substrate deformations that appeared to recruit adjacent keratinocytes into joining an evolving colony. Together with the observed differences in keratinocyte kinematics and substrate deformations, we developed two ad hoc analyses, termed distance rank and radius of cooperativity, that help to objectively ascribe what we perceive as increasingly cooperative behavior of keratinocytes cultured on soft vs. stiff gels during the process of colony formation. We hypothesize that the differences in keratinocyte colony formation observed in our experiments could be due to cell–cell mechanical signaling generated via local substrate deformations that appear to be correlated with the increased expression of β4 integrin within keratinocytes positioned along the periphery of an evolving cell colony.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10


  1. 1.

    Achterberg, V. F., L. Buscemi, H. Diekmann, J. Smith-Clerc, H. Schwengler, J. J. Meister, et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Invest. Dermatol. 134(7):1862–1872, 2014.

    Article  Google Scholar 

  2. 2.

    Anon, E., X. Serra-Picamal, P. Hersen, N. C. Gauthier, M. P. Sheetz, X. Trepat, et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl. Acad. Sci. USA 109(27):10891–10896, 2012.

    Article  Google Scholar 

  3. 3.

    Aratyn-Schaus, Y., P. W. Oakes, J. Stricker, S. P. Winter, and M. L. Gardel. Preparation of complaint matrices for quantifying cellular contraction. J. Visualized Exp. 46:2170, 2010

  4. 4.

    Boudou, T., J. Ohayon, C. Picart, R. I. Pettigrew, and P. Tracqui. Nonlinear elastic properties of polyacrylamide gels: implications for quantification of cellular forces. Biorheology 46(3):191–205, 2009.

    Google Scholar 

  5. 5.

    Butler, J. P., I. M. Tolic-Norrelykke, B. Fabry, and J. J. Fredberg. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282(3):C595–C605, 2002.

    Article  Google Scholar 

  6. 6.

    Chan, S. H., D. T. Võ, and T. Q. Nguyen, (ed.). Subpixel Motion Estimation Without Interpolation. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), IEEE, 2010.

  7. 7.

    Cras, J., C. Rowe-Taitt, D. Nivens, and F. Ligler. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors Bioelectron. 14(8):683–688, 1999.

    Article  Google Scholar 

  8. 8.

    Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4):481–490, 2009.

    Article  Google Scholar 

  9. 9.

    Eming, S. A. Biology of Wound Healing. In: Dermatology, edited by J. L. Bolognia, J. L. Jorizzo, and J. V. Schaffer. Philadephia: Elsevier Saunders, 2012.

    Google Scholar 

  10. 10.

    Evans, N. D., R. O. Oreffo, E. Healy, P. J. Thurner, and Y. H. Man. Epithelial mechanobiology, skin wound healing, and the stem cell niche. J. Mech. Behav. Biomed. Mater. 28:397–409, 2013.

    Article  Google Scholar 

  11. 11.

    Goffin, J. M., P. Pittet, G. Csucs, J. W. Lussi, J. J. Meister, and B. Hinz. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell. Biol. 172(2):259–268, 2006.

    Article  Google Scholar 

  12. 12.

    Grzesiak, J. J., and M. D. Pierschbacher. Changes in the concentrations of extracellular Mg++ and Ca++ down-regulate E-cadherin and up-regulate alpha 2 beta 1 integrin function, activating keratinocyte migration on type I collagen. J. Invest. Dermatol. 104(5):768–774, 1995.

    Article  Google Scholar 

  13. 13.

    Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90(6):2213–2220, 2006.

    Article  Google Scholar 

  14. 14.

    Hamill, K. J., S. B. Hopkinson, P. DeBiase, and J. C. Jones. BPAG1e maintains keratinocyte polarity through beta4 integrin-mediated modulation of Rac1 and cofilin activities. Mol. Biol Cell 20(12):2954–2962, 2009.

    Article  Google Scholar 

  15. 15.

    Hartwig, B., B. Borm, H. Schneider, M. J. Arin, G. Kirfel, and V. Herzog. Laminin-5-deficient human keratinocytes: defective adhesion results in a saltatory and inefficient mode of migration. Exp. Cell Res. 313(8):1575–1587, 2007.

    Article  Google Scholar 

  16. 16.

    Hunyadi, J., B. Farkas, C. Bertenyi, J. Olah, and A. Dobozy. Keratinocyte grafting: a new means of transplantation for full-thickness wounds. J. Dermatol. Surg. Oncol. 14(1):75–78, 1988.

    Article  Google Scholar 

  17. 17.

    Kim, J. H., X. Serra-Picamal, D. T. Tambe, E. H. Zhou, C. Y. Park, M. Sadati, et al. Propulsion and navigation within the advancing monolayer sheet. Nat. Mater. 12(9):856–863, 2013.

    Article  Google Scholar 

  18. 18.

    Kirsner, R. S., W. A. Marston, R. J. Snyder, T. D. Lee, D. I. Cargill, and H. B. Slade. Spray-applied cell therapy with human allogeneic fibroblasts and keratinocytes for the treatment of chronic venous leg ulcers: a phase 2, multicentre, double-blind, randomised, placebo-controlled trial. Lancet 380(9846):977–985, 2012.

    Article  Google Scholar 

  19. 19.

    Lange, T. S., A. K. Bielinsky, K. Kirchberg, I. Bank, K. Herrmann, T. Krieg, et al. Mg2+ and Ca2+ differentially regulate beta 1 integrin-mediated adhesion of dermal fibroblasts and keratinocytes to various extracellular matrix proteins. Exp. Cell Res. 214(1):381–388, 1994.

    Article  Google Scholar 

  20. 20.

    Lange, T. S., J. Kirchberg, A. K. Bielinsky, A. Leuker, I. Bank, T. Ruzicka, et al. Divalent cations (Mg2+, Ca2+) differentially influence the beta 1 integrin-mediated migration of human fibroblasts and keratinocytes to different extracellular matrix proteins. Exp. Dermatol. 4(3):130–137, 1995.

    Article  Google Scholar 

  21. 21.

    Leigh, I. M., and F. M. Watt. The Culture of Human Epidermal Keratinocytes. The Keratinocyte Handbook. Cambridge: Cambridge University Press, pp. 43–51, 1994.

    Google Scholar 

  22. 22.

    Martin, P. Wound healing-aiming for perfect skin regeneration. Science 276(5309):75–81, 1997.

    Article  Google Scholar 

  23. 23.

    Mertz, A. F., Y. Che, S. Banerjee, J. M. Goldstein, K. A. Rosowski, S. F. Revilla, et al. Cadherin-based intercellular adhesions organize epithelial cell–matrix traction forces. Proc. Natl. Acad. Sci. USA 110(3):842–847, 2013.

    Article  Google Scholar 

  24. 24.

    NiAnnaidh, A., K. Bruyere, M. Destrade, M. D. Gilchrist, and M. Ottenio. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 5(1):139–148, 2012.

    Article  Google Scholar 

  25. 25.

    Pelham, Jr, R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25):13661–13665, 1997.

    Article  Google Scholar 

  26. 26.

    Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1):198–209, 2005.

    Article  Google Scholar 

  27. 27.

    Raghupathy, R., C. Witzenburg, S. P. Lake, E. A. Sander, and V. H. Barocas. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133(9):091011, 2011.

    Article  Google Scholar 

  28. 28.

    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95(12):6044–6051, 2008.

    Article  Google Scholar 

  29. 29.

    Rudnicki, M. S., H. A. Cirka, M. Aghvami, E. A. Sander, Q. Wen, and K. L. Billiar. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous protein gels. Biophys. J. 105(1):11–20, 2013.

    Article  Google Scholar 

  30. 30.

    Sehgal, B. U., P. J. DeBiase, S. Matzno, T. L. Chew, J. N. Claiborne, S. B. Hopkinson, et al. Integrin beta4 regulates migratory behavior of keratinocytes by determining laminin-332 organization. J. Biol. Chem. 281(46):35487–35498, 2006.

    Article  Google Scholar 

  31. 31.

    Selby, J. C. Mechanobiology of Epidermal Keratinocytes: Desmosomes, Hemidesmosomes, Keratin Intermediate Filaments, and Blistering Skin Diseases. Mechanobiology of Cell–Cell and Cell–Matrix Interactions. Berlin: Springer, pp. 169–210, 2011.

    Google Scholar 

  32. 32.

    Selby, J. C., and M. A. Shannon. Mechanical response of a living human epidermal keratinocyte sheet as measured in a composite diaphragm inflation experiment. Biorheology 44(5–6):319–348, 2007.

    Google Scholar 

  33. 33.

    Tang, X., A. Tofangchi, S. V. Anand, and T. A. Saif. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput. Biol. 10(6):e1003631, 2014.

    Article  Google Scholar 

  34. 34.

    Toyjanova, J., E. Bar-Kochba, C. Lopez-Fagundo, J. Reichner, D. Hoffman-Kim, and C. Franck. High resolution, large deformation 3D traction force microscopy. PloS ONE 9(4):e90976, 2014.

    Article  Google Scholar 

  35. 35.

    Trappmann, B., J. E. Gautrot, J. T. Connelly, D. G. Strange, Y. Li, M. L. Oyen, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11(7):642–649, 2012.

    Article  Google Scholar 

  36. 36.

    Trepat, X., M. R. Wasserman, T. E. Angelini, E. Millet, D. A. Weitz, J. P. Butler, et al. Physical forces during collective cell migration. Nat. Phys. 5(6):426–430, 2009.

    Article  Google Scholar 

  37. 37.

    Tsuruta, D., T. Hashimoto, K. J. Hamill, and J. C. Jones. Hemidesmosomes and focal contact proteins: functions and cross-talk in keratinocytes, bullous diseases and wound healing. J. Dermatol. Sci. 62(1):1–7, 2011.

    Google Scholar 

  38. 38.

    Wang, Y., G. Wang, X. Luo, J. Qiu, and C. Tang. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns 38(3):414–420, 2012.

    Article  Google Scholar 

  39. 39.

    Watt, F. M. Influence of cell shape and adhesiveness on stratification and terminal differentiation of human keratinocytes in culture. J. Sci. Suppl. 8:313–326, 1987.

    Article  Google Scholar 

  40. 40.

    Watt, F. M., P. W. Jordan, and C. H. O’Neill. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA 85(15):5576–5580, 1988.

    Article  Google Scholar 

  41. 41.

    Wen, J. H., L. G. Vincent, A. Fuhrmann, Y. S. Choi, K. C. Hribar, H. Taylor-Weiner, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13(10):979–987, 2014.

    Article  Google Scholar 

  42. 42.

    Winer, J. P., S. Oake, and P. A. Janmey. Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PloS ONE 4(7):e6382, 2009.

    Article  Google Scholar 

  43. 43.

    Zamansky, G. B., U. Nguyen, and I. N. Chou. An immunofluorescence study of the calcium-induced coordinated reorganization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. J. Invest. Dermatol. 97(6):985–994, 1991.

    Article  Google Scholar 

Download references


Support for this project was provided by the National Institutes of Health (R03-AR063967) and the Roy J. Carver Charitable Trust (#14-4384). We thank Kelly Messingham for assistance with immunolabeling, and Janet Fairley, George Giudice, and Thomas Magin for insightful discussions on this work.

Conflict of interest

Hoda Zarkoob, Sandeep Bodduluri, Sailahari V. Ponnaluri, John C. Selby, and Edward A. Sander declare that they have no conflict of interest.

Ethical Standards

No human or animal studies or were carried out by the authors for this article.

Author information



Corresponding authors

Correspondence to John C. Selby or Edward A. Sander.

Additional information

Associate Editor Roger D. Kamm oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 35373 kb)

Supplementary material 2 (MP4 34992 kb)

Supplementary material 3 (MP4 36924 kb)

Supplementary material 4 (MP4 37305 kb)

Supplementary material 5 (MP4 29938 kb)

Supplementary material 6 (MP4 29142 kb)

Supplementary material 7 (MP4 78733 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zarkoob, H., Bodduluri, S., Ponnaluri, S.V. et al. Substrate Stiffness Affects Human Keratinocyte Colony Formation. Cel. Mol. Bioeng. 8, 32–50 (2015).

Download citation


  • Epithelial sheet
  • Traction microscopy
  • Polyacrylamide
  • Mechanosensing