Advertisement

Cellular and Molecular Bioengineering

, Volume 7, Issue 4, pp 497–509 | Cite as

Multistage Adipose-Derived Stem Cell Myogenesis: An Experimental and Modeling Study

  • Pinar Yilgor Huri
  • Andrew Wang
  • Alexander A. Spector
  • Warren L. GraysonEmail author
Article

Abstract

Adipose-derived stem/stromal cells (ASCs) possess great potential as an autologous cell source for cell-based regenerative therapies. We have previously shown that mimicking the natural dynamic muscle loading patterns enhances differentiation capacity of ASCs into aligned myotubes. In particular, the application of uniaxial cyclic strain significantly increased ASC myogenesis in monolayer cultures. In this study, we demonstrate that the temporal expression of key myogenic markers Pax3/7, Desmin, MyoD and myosin heavy chain closely mimics patterns described for muscle satellite cells. Using these lineage markers, we propose that the progression from undifferentiated ASCs to myotubes can be described as transitions through discrete stages. Based on our experimental data, we developed a compartmental kinetic stage-transition model to provide a quantitative description of the differentiation of ASCs to terminally differentiated myotubes. The model describing ASCs’ myogenic differentiation in response to biophysical cues could help to obtain a deeper understanding of factors governing the biological responses and provide clues for experimental methods to increase the efficiency of ASC myogenesis for the development of improved muscle regenerative therapies.

Keywords

Adipose-derived stem cell Myogenesis Dynamic culture Uniaxial strain Kinetic stage-transition model 

Notes

Acknowledgments

We would like to thank Dr. Jeffrey Gimble for providing the ASCs and Dr. Douglas DiGirolamo for use of the Flexcell system. We also thank Sue Kulason for the computational work at early stages of the project. This work was supported by Maryland Stem Cell Research Fund (2012-MSCRFF-165) and Johns Hopkins Department of Biomedical Engineering.

Conflict of Interest

Pinar Yilgor Huri, Andrew Wang, Alexander Spector, and Warren Grayson declare that they have no conflicts of interest.

Ethical Standards

Human ASCs were isolated in accordance with an Institutional Review Board approved protocol at the Stem Cell Biology Laboratory, Pennington Biomedical Research Center. No animal studies were carried out by the authors for this study.

References

  1. 1.
    Asakura, A., M. Komaki, and M. Rudnicki. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68(4–5):245–253, 2001.CrossRefGoogle Scholar
  2. 2.
    Bershadsky, A. D., N. Q. Balaban, and B. Geiger. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19:677–695, 2003.CrossRefGoogle Scholar
  3. 3.
    Charge, S. B., and M. A. Rudnicki. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84(1):209–238, 2004.CrossRefGoogle Scholar
  4. 4.
    Choi, Y. S., L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler. Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 33(8):2482–2491, 2012.CrossRefGoogle Scholar
  5. 5.
    Choi, Y. S., L. G. Vincent, A. R. Lee, K. C. Kretchmer, S. Chirasatitsin, M. K. Dobke, and A. J. Engler. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33(29):6943–6951, 2012.CrossRefGoogle Scholar
  6. 6.
    Collinsworth, A. M., C. E. Torgan, S. N. Nagda, R. J. Rajalingam, W. E. Kraus, and G. A. Truskey. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch. Cell Tissue Res. 302(2):243–251, 2000.CrossRefGoogle Scholar
  7. 7.
    Dingli, D., A. Traulsen, and J. M. Pacheco. Compartmental architecture and dynamics of hematopoiesis. PLoS ONE 2(4):e345, 2007.CrossRefGoogle Scholar
  8. 8.
    Doherty, J. T., K. C. Lenhart, M. V. Cameron, C. P. Mack, F. L. Conlon, and J. M. Taylor. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J. Biol. Chem. 286(29):25903–25921, 2011.CrossRefGoogle Scholar
  9. 9.
    Dubois, S. G., E. Z. Floyd, S. Zvonic, G. Kilroy, X. Wu, S. Carling, Y. D. Halvorsen, E. Ravussin, and J. M. Gimble. Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol. Biol. 449:69–79, 2008.Google Scholar
  10. 10.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  11. 11.
    Ferrari, G., G. Cusella-De Angelis, M. Coletta, E. Paolucci, A. Stornaiuolo, G. Cossu, and F. Mavilio. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530, 1998.CrossRefGoogle Scholar
  12. 12.
    Galli, R., U. Borello, A. Gritti, M. G. Minasi, C. Bjornson, M. Coletta, M. Mora, M. G. De Angelis, R. Fiocco, G. Cossu, and A. L. Vescovi. Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3(10):986–991, 2000.CrossRefGoogle Scholar
  13. 13.
    Geng, J., G. Liu, F. Peng, L. Yang, J. Cao, Q. Li, F. Chen, J. Kong, R. Pang, and C. Zhang. Decorin promotes myogenic differentiation and mdx mice therapeutic effects after transplantation of rat adipose-derived stem cells. Cytotherapy 14(7):877–886, 2012.CrossRefGoogle Scholar
  14. 14.
    Goh, B. C., S. Thirumala, G. Kilroy, R. V. Devireddy, and J. M. Gimble. Cryopreservation characteristics of adipose-derived stem cells: maintenance of differentiation potential and viability. J. Tissue Eng. Regen. Med. 1(4):322–324, 2007.CrossRefGoogle Scholar
  15. 15.
    Gonda, K., T. Shigeura, T. Sato, D. Matsumoto, H. Suga, K. Inoue, N. Aoi, H. Kato, K. Sato, S. Murase, I. Koshima, and K. Yoshimura. Preserved proliferative capacity and multipotency of human adipose-derived stem cells after long-term cryopreservation. Plast. Reconstr. Surg. 121(2):401–410, 2008.CrossRefGoogle Scholar
  16. 16.
    Hutton, D. L., E. M. Moore, J. Gimble, and W. L. Grayson. PDGF and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng. Part A. 19(17–18):2076–2086, 2013.Google Scholar
  17. 17.
    Karalaki, M., S. Fili, A. Philippou, and M. Koutsilieris. Muscle regeneration: cellular and molecular events. In Vivo 23(5):779–796, 2009.Google Scholar
  18. 18.
    Kuang, S., K. Kuroda, F. Le Grand, and M. A. Rudnicki. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010, 2007.CrossRefGoogle Scholar
  19. 19.
    Le Grand, F., and M. A. Rudnicki. Skeletal muscle satellite cells and adult myogenesis. Curr. Opin. Cell Biol. 19(6):628–633, 2007.CrossRefGoogle Scholar
  20. 20.
    Lee, W. C., T. M. Maul, D. A. Vorp, J. P. Rubin, and K. G. Marra. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 6(4):265–273, 2007.CrossRefGoogle Scholar
  21. 21.
    Li, Y., and J. Huard. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am. J. Pathol. 161(3):895–907, 2002.CrossRefGoogle Scholar
  22. 22.
    Liu, C., S. Baek, J. Kim, E. Vasko, R. Pyne, and C. Chan. Effect of static pre-stretch induced surface anisotropy on orientation of mesenchymal stem cells. Cell. Mol. Bioeng. 7(1):106–121, 2014.CrossRefGoogle Scholar
  23. 23.
    Liu, G., H. Zhou, Y. Li, G. Li, L. Cui, W. Liu, and Y. Cao. Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 57(1):18–24, 2008.CrossRefGoogle Scholar
  24. 24.
    Marciniak-Czochra, A., T. Stiehl, A. D. Ho, W. Jager, and W. Wagner. Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18(3):377–385, 2009.CrossRefGoogle Scholar
  25. 25.
    Maul, T. M., D. W. Chew, A. Nieponice, and D. A. Vorp. Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 10(6):939–953, 2011.CrossRefGoogle Scholar
  26. 26.
    Meligy, F. Y., K. Shigemura, H. M. Behnsawy, M. Fujisawa, M. Kawabata, and T. Shirakawa. The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev. Biol. Anim. 48(4):203–215, 2012.CrossRefGoogle Scholar
  27. 27.
    Mizuno, H., P. A. Zuk, M. Zhu, H. P. Lorenz, P. Benhaim, and M. H. Hedrick. Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr. Surg. 109(1):199–209; discussion 210–191, 2002.Google Scholar
  28. 28.
    Nieponice, A., T. M. Maul, J. M. Cumer, L. Soletti, and D. A. Vorp. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J. Biomed. Mater. Res. A 81(3):523–530, 2007.CrossRefGoogle Scholar
  29. 29.
    Olguin, H. C., Z. Yang, S. J. Tapscott, and B. B. Olwin. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J. Cell Biol. 177(5):769–779, 2007.CrossRefGoogle Scholar
  30. 30.
    Powell, C. A., B. L. Smiley, J. Mills, and H. H. Vandenburgh. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell Physiol. 283(5):C1557–1565, 2002.CrossRefGoogle Scholar
  31. 31.
    Qian, J., H. Liu, Y. Lin, W. Chen, and H. Gao. A mechanochemical model of cell reorientation on substrates under cyclic stretch. PLoS ONE 8(6):e65864, 2013.CrossRefGoogle Scholar
  32. 32.
    Quintero, A. J., V. J. Wright, F. H. Fu, and J. Huard. Stem cells for the treatment of skeletal muscle injury. Clin. Sports Med. 28(1):1–11, 2009.CrossRefGoogle Scholar
  33. 33.
    Shi, X., and D. J. Garry. Muscle stem cells in development, regeneration, and disease. Genes Dev. 20(13):1692–1708, 2006.CrossRefGoogle Scholar
  34. 34.
    Sicari, B. M., C. L. Dearth, and S. F. Badylak. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat. Rec. (Hoboken). 297(1):51–64, 2014.CrossRefGoogle Scholar
  35. 35.
    Wagers, A. J., and I. M. Conboy. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 122(5):659–667, 2005.CrossRefGoogle Scholar
  36. 36.
    Wong, S. T., S. K. Teo, S. Park, K. H. Chiam, and E. K. Yim. Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation. Biomech. Model. Mechanobiol. 13(1):27–39, 2014.CrossRefGoogle Scholar
  37. 37.
    Yilgor Huri, P., C. A. Cook, D. L. Hutton, B. C. Goh, J. M. Gimble, D. J. DiGirolamo, and W. L. Grayson. Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells. Biochem. Biophys. Res. Commun. 438(1):180–185, 2013.Google Scholar
  38. 38.
    Zandstra, P. W., D. A. Lauffenburger, and C. J. Eaves. A ligand-receptor signaling threshold model of stem cell differentiation control: a biologically conserved mechanism applicable to hematopoiesis. Blood 96(4):1215–1222, 2000.Google Scholar
  39. 39.
    Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2):211–228, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Pinar Yilgor Huri
    • 1
    • 2
  • Andrew Wang
    • 1
  • Alexander A. Spector
    • 1
  • Warren L. Grayson
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations