Cellular and Molecular Bioengineering

, Volume 8, Issue 1, pp 76–85 | Cite as

Probing the Biophysical Properties of Primary Breast Tumor-Derived Fibroblasts

  • Turi A. Alcoser
  • Francois Bordeleau
  • Shawn P. Carey
  • Marsha C. Lampi
  • Daniel R. Kowal
  • Sahana Somasegar
  • Sonal Varma
  • Sandra J. Shin
  • Cynthia A. Reinhart-King
Original Paper


As cancer progresses, cells must adapt to a new and stiffer environment, which can ultimately alter how normal cells within the tumor behave. In turn, these cells are known to further aid tumor progression. Therefore, there is potentially a unique avenue to better understand metastatic potential through single-cell biophysical assays performed on patient-derived cells. Here, we perform biophysical characterization of primary human fibroblastic cells obtained from mammary carcinoma and normal contralateral tissue. Through a series of tissue dissociation, differential centrifugation and trypsinization steps, we isolate an adherent fibroblastic population viable for biomechanical testing. 2D TFM and 3D migration measurements in a collagen matrix show that fibroblasts obtained from patient tumors generate more traction forces and display improved migration potential than their counterparts from normal tissue. Moreover, through the use of an embedded spheroid model, we confirmed the extracellular matrix remodeling behavior of primary cells isolated from carcinoma. Overall, correlating biophysical characterization of normal- and carcinoma-derived samples from individual patients along with patient outcome may become a powerful approach to further our comprehension of metastasis and ultimately design drug targets on a patient-specific basis.


Stromal cells Migration Collagen Traction force microscopy Spheroid Confocal reflectance 



This work was supported by the Cornell Center on the Microenvironment & Metastasis through Award Number U54CA143876 from the National Cancer Institute, a National Science Foundation – National Institute of Health Physical and Engineering Sciences in Oncology (PESO) award (Award Number 1233827) and an NSF CAREER award to C. A. R. This work was also supported by National Science Foundation Graduate Research Fellowships to S. P. C. and M. C. L.

Conflict of interest

T. A. A., F. B., S. P. C., M. C. L., D. R. K., S. S., S. V., S. J. S., and C. A. R declare that they have no conflicts of interest.

Ethical Standards

All experiments using samples from human subjects were carried out in accordance with Weill Cornell IRB guidelines. Human tissues were de-identified. No animals were used in this study.


  1. 1.
    Agus, D. B., J. F. Alexander, W. Arap, et al. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3:1449, 2013.CrossRefGoogle Scholar
  2. 2.
    Bordeleau, F., T. A. Alcoser, and C. A. Reinhart-King. Physical biology in cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. Am. J. Physiol. Cell Physiol. 306(2):C110–C120, 2014.CrossRefGoogle Scholar
  3. 3.
    Bourhis, X. D.-L., Y. Berthois, G. Millot, et al. Effect of stromal and epithelial cells derived from normal and tumorous breast tissue on the proliferation of human breast cancer cell lines in co-culture. Int. J. Cancer 71(1):42–48, 1997.CrossRefGoogle Scholar
  4. 4.
    Bremnes, R. M., T. Donnem, S. Al-Saad, et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 6(1):209–217, 2011.CrossRefGoogle Scholar
  5. 5.
    Butcher, D. T., T. Alliston, and V. M. Weaver. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9(2):108–122, 2009.CrossRefGoogle Scholar
  6. 6.
    Carey, S. P., T. M. D’Alfonso, S. J. Shin, and C. A. Reinhart-King. Mechanobiology of tumor invasion: engineering meets oncology. Crit. Rev. Oncol. Hematol. 83(2):170–183, 2012.CrossRefGoogle Scholar
  7. 7.
    Carey, S. P., C. M. Kraning-Rush, R. M. Williams, and C. A. Reinhart-King. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33(16):4157–4165, 2012.CrossRefGoogle Scholar
  8. 8.
    Carey, S. P., A. Starchenko, A. L. McGregor, and C. A. Reinhart-King. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin. Exp. Metastasis 30(5):615–630, 2013.CrossRefGoogle Scholar
  9. 9.
    Cukierman, E., and D. E. Bassi. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin. Cancer Biol. 20(3):139–145, 2010.CrossRefGoogle Scholar
  10. 10.
    De Wever, O., P. Demetter, M. Mareel, and M. Bracke. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer 123(10):2229–2238, 2008.CrossRefGoogle Scholar
  11. 11.
    Dembo, M., and Y. L. Wang. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4):2307–2316, 1999.CrossRefGoogle Scholar
  12. 12.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.CrossRefGoogle Scholar
  13. 13.
    Dumont, N., B. Liu, R. A. Defilippis, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15(3):249–262, 2013.Google Scholar
  14. 14.
    Eriksson, J. E., T. Dechat, B. Grin, et al. Introducing intermediate filaments: from discovery to disease. J. Clin. Invest. 119(7):1763–1771, 2009.CrossRefGoogle Scholar
  15. 15.
    Gaggioli, C., S. Hooper, C. Hidalgo-Carcedo, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9(12):1392–1400, 2007.CrossRefGoogle Scholar
  16. 16.
    Gilbert, S., A. Loranger, N. Daigle, and N. Marceau. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154(4):763–773, 2001.CrossRefGoogle Scholar
  17. 17.
    Goetz, J. G., S. Minguet, I. Navarro-Lerida, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163, 2011.CrossRefGoogle Scholar
  18. 18.
    Kawashiri, S., A. Tanaka, N. Noguchi, et al. Significance of stromal desmoplasia and myofibroblast appearance at the invasive front in squamous cell carcinoma of the oral cavity. Head Neck 31(10):1346–1353, 2009.CrossRefGoogle Scholar
  19. 19.
    Kraning-Rush, C. M., J. P. Califano, and C. A. Reinhart-King. Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572, 2012.CrossRefGoogle Scholar
  20. 20.
    Kraning-Rush, C. M., S. P. Carey, J. P. Califano, B. N. Smith, and C. A. Reinhart-King. The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol. 8(1):015009, 2011.CrossRefGoogle Scholar
  21. 21.
    Levental, K. R., H. Yu, L. Kass, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906, 2009.CrossRefGoogle Scholar
  22. 22.
    Lopez, J. I., I. Kang, W. K. You, D. M. McDonald, and V. M. Weaver. In situ force mapping of mammary gland transformation. Integr. Biol. (Camb) 3(9):910–921, 2011.CrossRefGoogle Scholar
  23. 23.
    Madar, S., I. Goldstein, and V. Rotter. ‘Cancer associated fibroblasts’—more than meets the eye. Trends Mol. Med. 19(8):447–453, 2013.CrossRefGoogle Scholar
  24. 24.
    Mao, Y., E. T. Keller, D. H. Garfield, K. Shen, and J. Wang. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev. 32(1–2):303–315, 2013.CrossRefGoogle Scholar
  25. 25.
    Marsden, C. G., M. J. Wright, R. Pochampally, and B. G. Rowan. Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol. Biol. 590:363–375, 2009.CrossRefGoogle Scholar
  26. 26.
    Orimo, A., P. B. Gupta, D. C. Sgroi, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348, 2005.CrossRefGoogle Scholar
  27. 27.
    Paszek, M. J., N. Zahir, K. R. Johnson, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.CrossRefGoogle Scholar
  28. 28.
    Plodinec, M., M. Loparic, C. A. Monnier, et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7(11):757–765, 2012.CrossRefGoogle Scholar
  29. 29.
    Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(1):38, 2006.CrossRefGoogle Scholar
  30. 30.
    Provenzano, P. P., D. R. Inman, K. W. Eliceiri, S. M. Trier, and P. J. Keely. Contact guidance mediated three-dimensional cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95(11):5374–5384, 2008.CrossRefGoogle Scholar
  31. 31.
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2014;
  32. 32.
    Reinhart-King, C. A., M. Dembo, and D. A. Hammer. The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1):676–689, 2005.CrossRefGoogle Scholar
  33. 33.
    Ronnov-Jessen, L., O. W. Petersen, and M. J. Bissell. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76(1):69–125, 1996.Google Scholar
  34. 34.
    Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1):a003228, 2011.CrossRefGoogle Scholar
  35. 35.
    Shieh, A. C., H. A. Rozansky, B. Hinz, and M. A. Swartz. Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res. 71(3):790–800, 2011.CrossRefGoogle Scholar
  36. 36.
    Shvetsova, E. V., O. S. Rogovaya, S. B. Tkachenko, I. V. Kiselev, A. V. Vasil’ev, and V. V. Terskikh. Contractile capacity of fibroblasts from different sources in the model of living skin equivalent. Biol. Bull. Russ. Acad. Sci. 35(2):146–150, 2008.CrossRefGoogle Scholar
  37. 37.
    Speirs, V., A. R. Green, D. S. Walton, et al. Short-term primary culture of epithelial cells derived from human breast tumours. Br. J. Cancer 78(11):1421–1429, 1998.CrossRefGoogle Scholar
  38. 38.
    Wolf, K., M. Te Lindert, M. Krause, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201(7):1069–1084, 2013.CrossRefGoogle Scholar
  39. 39.
    Wolf, K., Y. I. Wu, Y. Liu, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9(8):893–904, 2007.CrossRefGoogle Scholar
  40. 40.
    Wood, S. N. Generalized additive models: an introduction with R. Boca Raton, FL: Chapman & Hall/CRC, 2006.Google Scholar
  41. 41.
    Yamaguchi, H., N. Yoshida, M. Takanashi, et al. Stromal fibroblasts mediate extracellular matrix remodeling and invasion of scirrhous gastric carcinoma cells. PLoS One 9(1):e85485, 2014.CrossRefGoogle Scholar
  42. 42.
    Zhang, W., L. M. Matrisian, K. Holmbeck, C. C. Vick, and E. L. Rosenthal. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo. BMC Cancer 6:52, 2006.CrossRefzbMATHGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Turi A. Alcoser
    • 1
  • Francois Bordeleau
    • 1
  • Shawn P. Carey
    • 1
  • Marsha C. Lampi
    • 1
  • Daniel R. Kowal
    • 2
  • Sahana Somasegar
    • 1
  • Sonal Varma
    • 3
  • Sandra J. Shin
    • 3
  • Cynthia A. Reinhart-King
    • 1
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  2. 2.Department of Statistical ScienceCornell UniversityIthacaUSA
  3. 3.Department of Pathology and Laboratory MedicineThe New York Presbyterian Hospital-Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations