Cellular and Molecular Bioengineering

, Volume 7, Issue 3, pp 355–368 | Cite as

Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

  • Rachelle N. Palchesko
  • John M. Szymanski
  • Amrita Sahu
  • Adam W. Feinberg
Article

Abstract

Cell–matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell–matrix adhesions and cell behavior in 2D and 3D microenvironments.

Keywords

Fibronectin Laminin Collagen Type IV Fribrinogen Myocyte Encapsulation Surface-initiated assembly c2c12 

Supplementary material

12195_2014_348_MOESM1_ESM.mpg (3.4 mb)
Supplementary material 1 (MPG 3468 kb)
12195_2014_348_MOESM2_ESM.mpg (876 kb)
Supplementary material 2 (MPG 876 kb)

References

  1. 1.
    Acloque, H., M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Investig. 119:1438–1449, 2009.CrossRefGoogle Scholar
  2. 2.
    Aguado, B. A., W. Mulyasasmita, J. Su, K. J. Lampe, and S. C. Heilshorn. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18:806–815, 2012.CrossRefGoogle Scholar
  3. 3.
    Azam, A., K. E. Laflin, M. Jamal, R. Fernandes, and D. H. Gracias. Self-folding micropatterned polymeric containers. Biomed. Microdevices 13:51–58, 2011.CrossRefGoogle Scholar
  4. 4.
    Berrier, A. L., and K. M. Yamada. Cell-matrix adhesion. J. Cell. Physiol. 213:565–573, 2007.CrossRefGoogle Scholar
  5. 5.
    Canavan, H. E., X. Cheng, D. J. Graham, B. D. Ratner, and D. G. Castner. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21:1949–1955, 2005.CrossRefGoogle Scholar
  6. 6.
    Cha, C. E. Y., et al. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules 15:283–290, 2014.CrossRefGoogle Scholar
  7. 7.
    DeVolder, R., and H. J. Kong. Hydrogels for in vivo-like three-dimensional cellular studies. Wiley Interdiscip. Rev. Syst. Biol. Med. 4:351–365, 2012.CrossRefGoogle Scholar
  8. 8.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefGoogle Scholar
  9. 9.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefGoogle Scholar
  10. 10.
    Feinberg, A. W., and K. K. Parker. Surface-initiated assembly of protein nanofabrics. Nano Lett. 10:2184–2191, 2010.CrossRefGoogle Scholar
  11. 11.
    Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.CrossRefGoogle Scholar
  12. 12.
    Gauvin, R., and A. Khademhosseini. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 5:4258–4264, 2011.CrossRefGoogle Scholar
  13. 13.
    Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2:793–805, 2001.CrossRefGoogle Scholar
  14. 14.
    Haraguchi, Y., et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 7:850–858, 2012.CrossRefGoogle Scholar
  15. 15.
    Hayman, E. G., M. D. Pierschbacher, S. Suzuki, and E. Ruoslahti. Vitronectin—a major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res. 160:245, 1985.CrossRefGoogle Scholar
  16. 16.
    Jones, S. P., and S. W. Kennedy. Chicken embryo cardiomyocyte cultures-025 efa new approach for studying effects of halogenated aromatic hydrocarbons in the avian heart. Toxicol. Sci. 109:66–74, 2009.CrossRefGoogle Scholar
  17. 17.
    Jones, D. L., and A. J. Wagers. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9:11–21, 2008.CrossRefGoogle Scholar
  18. 18.
    Khademhosseini, A., R. Langer, J. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103:2480–2487, 2006.CrossRefGoogle Scholar
  19. 19.
    Kim, D. H., H. Lee, Y. K. Lee, J. M. Nam, and A. Levchenko. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Adv. Mater. 22:4551–4566, 2010.CrossRefGoogle Scholar
  20. 20.
    Lin, F., X.-D. Ren, Z. Pan, L. Macri, W.-X. Zong, M. G. Tonnesen, M. Rafailovich, D. Bar-Sagi, and R. A. F. Clark. Fibronectin growth factor-binding domains are required for fibroblast survival. J. Invest. Dermatol. 131:84–98, 2011.CrossRefGoogle Scholar
  21. 21.
    Mazzitelli, S., L. Capretto, F. Quinci, R. Piva, and C. Nastruzzi. Preparation of cell-encapsulation devices in confined microenvironment. Adv. Drug Deliv. Rev. 65:1533–1555, 2013.CrossRefGoogle Scholar
  22. 22.
    Okano, T., N. Yamada, H. Sakai, and Y. Sakurai. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(n-isopropylacrylamide). J. Biomed. Mater. Res. 27:1243–1251, 1993.CrossRefGoogle Scholar
  23. 23.
    Orive, G., R. M. Hernández, A. R. Gascón, R. Calafiore, T. M. Chang, P. De Vos, G. Hortelano, D. Hunkeler, I. Lacík, and A. J. Shapiro. Cell encapsulation: promise and progress. Nat. Med. 9:104–107, 2003.CrossRefGoogle Scholar
  24. 24.
    Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33:1469–1490, 2005.CrossRefGoogle Scholar
  25. 25.
    Pedraza, E., M. M. Coronel, C. A. Fraker, C. Ricordi, and C. L. Stabler. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl. Acad. Sci. USA 109:4245–4250, 2012.CrossRefGoogle Scholar
  26. 26.
    Peh, G. S. L., R. W. Beuerman, A. Colman, D. T. Tan, and J. S. Mehta. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 91:811–819, 2011.CrossRefGoogle Scholar
  27. 27.
    Peran, M., M. A. Garcia, E. Lopez-Ruiz, M. Bustamante, G. Jimenez, R. Madeddu, and J. A. Marchal. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 13:3847–3886, 2012.CrossRefGoogle Scholar
  28. 28.
    Selimovic, S., J. Oh, H. Bae, M. Dokmeci, and A. Khademhosseini. Microscale strategies for generating cell-encapsulating hydrogels. Polymers 4:1554–1579, 2012.CrossRefGoogle Scholar
  29. 29.
    Steele, J. G., G. Johnson, and P. A. Underwood. Role of serum vitronectin and fibronectin in adhesion of fibroblasts following seeding onto tissue culture polystyrene. J. Biomed. Mater. Res. 26:861–884, 1992.CrossRefGoogle Scholar
  30. 30.
    Stern, E., S. M. Jay, S. L. Demento, R. P. Murelli, M. A. Reed, T. Malinski, D. A. Spiegel, D. J. Mooney, and T. M. Fahmy. Spatiotemporal control over molecular delivery and cellular encapsulation from electropolymerized micro- and nanopatterned surfaces. Adv. Funct. Mater. 19:2888–2895, 2009.CrossRefGoogle Scholar
  31. 31.
    Stoychev, G., N. Puretskiy, and L. Ionov. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7:3277–3279, 2011.CrossRefGoogle Scholar
  32. 32.
    Sun, Y., R. Duffy, A. Lee, and A. W. Feinberg. Optimizing the structure and contractility of engineered skeletal muscle thin films. Acta Biomater. 9:7885–7894, 2013.CrossRefGoogle Scholar
  33. 33.
    Szymanski, J. M., Q. Jallerat, and A. W. Feinberg. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly. J. Vis. Exp. 86:e51176, 2014.Google Scholar
  34. 34.
    Tan, W. H., and S. Takeuchi. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19:2696–2701, 2007.CrossRefGoogle Scholar
  35. 35.
    Toworfe, G. K., R. J. Composto, C. S. Adams, I. M. Shapiro, and P. Ducheyne. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. Part A 71A:449–461, 2004.CrossRefGoogle Scholar
  36. 36.
    Zhang, M., D. Methot, V. Poppa, Y. Fujio, K. Walsh, and C. E. Murry. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell. Cardiol. 33:907–921, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Rachelle N. Palchesko
    • 1
  • John M. Szymanski
    • 1
  • Amrita Sahu
    • 1
  • Adam W. Feinberg
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations