Cellular and Molecular Bioengineering

, Volume 7, Issue 3, pp 432–445 | Cite as

Depolarization of Cellular Resting Membrane Potential Promotes Neonatal Cardiomyocyte Proliferation In Vitro

  • Jen-Yu Lan
  • Corin Williams
  • Michael Levin
  • Lauren Deems BlackIII


Cardiomyocytes (CMs) undergo a rapid transition from hyperplastic to hypertrophic growth soon after birth, which is a major challenge to the development of engineered cardiac tissue for pediatric patients. Resting membrane potential (V mem) has been shown to play an important role in cell differentiation and proliferation during development. We hypothesized that depolarization of neonatal CMs would stimulate or maintain CM proliferation in vitro. To test our hypothesis, we isolated postnatal day 3 neonatal rat CMs and subjected them to sustained depolarization via the addition of potassium gluconate or Ouabain to the culture medium. Cell density and CM percentage measurements demonstrated an increase in mitotic CMs along with a ~twofold increase in CM numbers with depolarization. In addition, depolarization led to an increase in cells in G2 and S phase, indicating increased proliferation, as measured by flow cytometry. Surprisingly depolarization of V mem with either treatment led to inhibition of proliferation in cardiac fibroblasts. This effect is abrogated when the study was carried out on postnatal day 7 neonatal CMs, which are less proliferative, indicating that the likely mechanism of depolarization is the maintenance of the proliferating CM population. In summary, our findings suggest that depolarization maintains postnatal CM proliferation and may be a novel approach to encourage growth of engineered tissue and cardiac regeneration in pediatric patients.


Cell cycle Potassium gluconate Ouabain Cardiac fibroblasts Akt pathway 



We gratefully acknowledge Professor Qiaobing Xu and Yuji Takeda for the use of the flow cytometer and assistance with protocols and data analysis techniques. We also acknowledge the NIH-NHLBI for funding this work via an NRSA individual postdoctoral fellowship (F32 HL112538) to CW and awards R00HL093358 and R21HL115570 to LDB. M. L. gratefully acknowledges support of the G. Harold and Leila Y. Mathers Charitable Foundation, DARPA (W911NF-09-1-0125), and the W. M. Keck Foundation.

Conflict of interest

The authors (J.L., C.W., M.L. and L.B.) have no conflicts of interest to report.

Ethical Standards

No human studies were carried out by the authors for this article. All procedures involving animals were carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee at Tufts University.

Supplementary material

12195_2014_346_MOESM1_ESM.docx (271 kb)
Supplementary material 1 (DOCX 270 kb)


  1. 1.
    Adams, D. S., and M. Levin. Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harb. Protoc. 2012(4):459–464, 2012.Google Scholar
  2. 2.
    Adams, D. S., and M. Levin. General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harb. Protoc. 2012(4):385–397, 2012.Google Scholar
  3. 3.
    Adams, D. S., A. S. Tseng, and M. Levin. Light-activation of the Archaerhodopsin H(+)-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol. Open 2(3):306–313, 2013.CrossRefGoogle Scholar
  4. 4.
    Aprea, J., and F. Calegari. Bioelectric state and cell cycle control of mammalian neural stem cells. Stem Cells Int. 2012:816049, 2012.CrossRefGoogle Scholar
  5. 5.
    Benamer, N., H. Moha Ou Maati, S. Demolombe, A. Cantereau, A. Delwail, P. Bois, J. Bescond, and J. F. Faivre. Molecular and functional characterization of a new potassium conductance in mouse ventricular fibroblasts. J. Mol. Cell. Cardiol. 46(4):508–517, 2009.CrossRefGoogle Scholar
  6. 6.
    Bentrup, F., T. Sandan, and L. Jaffe. Induction of polarity in fucus eggs by potassium ion gradients. Protoplasma 64:254, 1967.CrossRefGoogle Scholar
  7. 7.
    Bettencourt-Dias, M., S. Mittnacht, and J. P. Brockes. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J. Cell Sci. 116(Pt 19):4001–4009, 2003.CrossRefGoogle Scholar
  8. 8.
    Binggeli, R., and R. Weinstein. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J. Theor. Biol. 123:377–401, 1986.CrossRefGoogle Scholar
  9. 9.
    Blackiston, D., D. S. Adams, J. M. Lemire, M. Lobikin, and M. Levin. Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis. Model Mech. 4(1):67–85, 2011.CrossRefGoogle Scholar
  10. 10.
    Blackiston, D. J., K. A. McLaughlin, and M. Levin. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8(21):3519–3528, 2009.CrossRefGoogle Scholar
  11. 11.
    Borgens, R. B. The role of natural and applied electric fields in neuronal regeneration and development. Prog. Clin. Biol. Res. 210:239–250, 1986.Google Scholar
  12. 12.
    Cone, C. D. The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann. New York Acad. Sci. 238:420–435, 1974.CrossRefGoogle Scholar
  13. 13.
    Cone, Jr., C. D., and C. M. Cone. Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science (New York, N.Y.) 192(4235):155–158, 1976.CrossRefGoogle Scholar
  14. 14.
    Cone, Jr., C. D., and M. Tongier, Jr. Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology 25(2):168–182, 1971.CrossRefGoogle Scholar
  15. 15.
    Cone, Jr., C. D., and M. Tongier, Jr. Contact inhibition of division: involvement of the electrical transmembrane potential. J. Cell. Physiol. 82(3):373–386, 1973.CrossRefGoogle Scholar
  16. 16.
    Corvol, J. C., E. Valjent, M. Toutant, H. Enslen, T. Irinopoulou, S. Lev, D. Herve, and J. A. Girault. Depolarization activates ERK and proline-rich tyrosine kinase 2 (PYK2) independently in different cellular compartments in hippocampal slices. J. Biol. Chem. 280(1):660–668, 2005.CrossRefGoogle Scholar
  17. 17.
    Engel, F. B., L. Hauck, M. C. Cardoso, H. Leonhardt, R. Dietz, and R. von Harsdorf. A mammalian myocardial cell-free system to study cell cycle reentry in terminally differentiated cardiomyocytes. Circ. Res. 85(3):294–301, 1999.CrossRefGoogle Scholar
  18. 18.
    Feinstein, J. A., D. W. Benson, A. M. Dubin, M. S. Cohen, D. M. Maxey, W. T. Mahle, E. Pahl, J. Villafane, A. B. Bhatt, L. F. Peng, B. A. Johnson, A. L. Marsden, C. J. Daniels, N. A. Rudd, C. A. Caldarone, K. A. Mussatto, D. L. Morales, D. D. Ivy, J. W. Gaynor, J. S. Tweddell, B. J. Deal, A. K. Furck, G. L. Rosenthal, R. G. Ohye, N. S. Ghanayem, J. P. Cheatham, W. Tworetzky, and G. R. Martin. Hypoplastic left heart syndrome: current considerations and expectations. J. Am. Coll. Cardiol. 59(1 Suppl):S1–S42, 2012.CrossRefGoogle Scholar
  19. 19.
    Fujio, Y., T. Nguyen, D. Wencker, R. N. Kitsis, and K. Walsh. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101(6):660–667, 2000.CrossRefGoogle Scholar
  20. 20.
    Harris, I. S., S. Zhang, I. Treskov, A. Kovacs, C. Weinheimer, and A. J. Muslin. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 110(6):718–723, 2004.CrossRefGoogle Scholar
  21. 21.
    Jenkins, K. J., A. Correa, J. A. Feinstein, L. Botto, A. E. Britt, S. R. Daniels, M. Elixson, C. A. Warnes, C. L. Webb, and Y. American. Heart Association Council on Cardiovascular Disease in the, Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115(23):2995–3014, 2007.CrossRefGoogle Scholar
  22. 22.
    Jopling, C., E. Sleep, M. Raya, M. Marti, A. Raya, and J. C. Izpisua Belmonte. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464(7288):606–609, 2010.CrossRefGoogle Scholar
  23. 23.
    Kuhn, B., F. del Monte, R. J. Hajjar, Y. S. Chang, D. Lebeche, S. Arab, and M. T. Keating. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13(8):962–969, 2007.CrossRefGoogle Scholar
  24. 24.
    Levin, M. Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. Wiley Interdiscip. Rev. 5(6):657–676, 2013.Google Scholar
  25. 25.
    Li, F., X. Wang, J. M. Capasso, and A. M. Gerdes. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J. Mol. Cell. Cardiol. 28(8):1737–1746, 1996.CrossRefGoogle Scholar
  26. 26.
    Liou, J. Y., H. J. Hong, L. C. Sung, H. H. Chao, P. Y. Chen, T. H. Cheng, P. Chan, and J. C. Liu. Nicorandil inhibits angiotensin-II-induced proliferation of cultured rat cardiac fibroblasts. Pharmacology 87(3–4):144–151, 2011.CrossRefGoogle Scholar
  27. 27.
    Liu, L., X. Zhao, S. V. Pierre, and A. Askari. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am. J. Physiol. Cell Physiol. 293(5):C1489–C1497, 2007.CrossRefGoogle Scholar
  28. 28.
    Maharana, C., K. P. Sharma, and S. K. Sharma. Feedback mechanism in depolarization-induced sustained activation of extracellular signal-regulated kinase in the hippocampus. Sci. Rep. 3:1103, 2013.CrossRefGoogle Scholar
  29. 29.
    McCaig, C. D., A. M. Rajnicek, B. Song, and M. Zhao. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85(3):943–978, 2005.CrossRefGoogle Scholar
  30. 30.
    Mollova, M., K. Bersell, S. Walsh, J. Savla, L. T. Das, S. Y. Park, L. E. Silberstein, C. G. Dos Remedios, D. Graham, S. Colan, and B. Kuhn. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA 110(4):1446–1451, 2013.CrossRefGoogle Scholar
  31. 31.
    Morgan, K. Y., and L. D. Black. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 20(11–12):1654–1667, 2014.CrossRefGoogle Scholar
  32. 32.
    Oviedo, N. J., C. L. Nicolas, D. S. Adams, and M. Levin. Live imaging of planarian membrane potential using DiBAC4(3). CSH Protoc. 3(10):1–5, 2008.Google Scholar
  33. 33.
    Pai, V. P., S. Aw, T. Shomrat, J. M. Lemire, and M. Levin. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139(2):313–323, 2012.CrossRefGoogle Scholar
  34. 34.
    Porrello, E. R., A. I. Mahmoud, E. Simpson, J. A. Hill, J. A. Richardson, E. N. Olson, and H. A. Sadek. Transient regenerative potential of the neonatal mouse heart. Science (New York, NY) 331(6020):1078–1080, 2011.CrossRefGoogle Scholar
  35. 35.
    Quintas, L. E., S. V. Pierre, L. Liu, Y. Bai, X. Liu, and Z. J. Xie. Alterations of Na+/K+-ATPase function in caveolin-1 knockout cardiac fibroblasts. J. Mol. Cell. Cardiol. 49(3):525–531, 2010.CrossRefGoogle Scholar
  36. 36.
    Radisic, M., H. Park, T. P. Martens, J. E. Salazar-Lazaro, W. Geng, Y. Wang, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J. Biomed. Mater. Res. Part A 86(3):713–724, 2008.CrossRefGoogle Scholar
  37. 37.
    Sachs, H. G., P. J. Stambrook, and J. D. Ebert. Changes in membrane potential during the cell cycle. Exp. Cell Res. 83(2):362–366, 1974.CrossRefGoogle Scholar
  38. 38.
    Sedmera, D., N. Hu, K. M. Weiss, B. B. Keller, S. Denslow, and R. P. Thompson. Cellular changes in experimental left heart hypoplasia. Anat. Rec. 267(2):137–145, 2002.CrossRefGoogle Scholar
  39. 39.
    Shiojima, I., and K. Walsh. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 20(24):3347–3365, 2006.CrossRefGoogle Scholar
  40. 40.
    Sundelacruz, S., M. Levin, and D. L. Kaplan. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS ONE 3(11):e3737, 2008.CrossRefGoogle Scholar
  41. 41.
    Sundelacruz, S., M. Levin, and D. L. Kaplan. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng. Part A. 19(17–18):1889–1908, 2013.CrossRefGoogle Scholar
  42. 42.
    Sundelacruz, S., M. Levin, and D. L. Kaplan. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng. Part A 19(17-18):1889–1908, 2013.CrossRefGoogle Scholar
  43. 43.
    Swayne, L. A., and L. Wicki-Stordeur. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels 6(2):69–74, 2012.CrossRefGoogle Scholar
  44. 44.
    Tahara, S., K. Fukuda, H. Kodama, T. Kato, S. Miyoshi, and S. Ogawa. Potassium channel blocker activates extracellular signal-regulated kinases through Pyk2 and epidermal growth factor receptor in rat cardiomyocytes. J. Am. Coll. Cardiol. 38(5):1554–1563, 2001.CrossRefGoogle Scholar
  45. 45.
    Tseng, A. S., W. S. Beane, J. M. Lemire, A. Masi, and M. Levin. Induction of vertebrate regeneration by a transient sodium current. J. Neurosci. 30(39):13192–13200, 2010.CrossRefGoogle Scholar
  46. 46.
    Tseng, A., and M. Levin. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Commun. Integr. Biol. 6(1):1–8, 2013.CrossRefGoogle Scholar
  47. 47.
    Vaillant, A. R., I. Mazzoni, C. Tudan, M. Boudreau, D. R. Kaplan, and F. D. Miller. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146(5):955–966, 1999.CrossRefGoogle Scholar
  48. 48.
    van der Linde, D., E. E. Konings, M. A. Slager, M. Witsenburg, W. A. Helbing, J. J. Takkenberg, and J. W. Roos-Hesselink. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58(21):2241–2247, 2011.CrossRefGoogle Scholar
  49. 49.
    Williams, C., K. P. Quinn, I. Georgakoudi, and L. D. Black, 3rd. Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 10(1):194–204, 2014.CrossRefGoogle Scholar
  50. 50.
    Winnicka, K., K. Bielawski, A. Bielawska, and W. Miltyk. Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts. Nat. Prod. Res. 24(3):274–285, 2010.CrossRefGoogle Scholar
  51. 51.
    Xie, Z. Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann. New York Acad. Sci. 986:497–503, 2003.CrossRefGoogle Scholar
  52. 52.
    Yamada, A., N. Gaja, S. Ohya, K. Muraki, H. Narita, T. Ohwada, and Y. Imaizumi. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn. J. Pharmacol. 86(3):342–350, 2001.CrossRefGoogle Scholar
  53. 53.
    Yang, M., and W. J. Brackenbury. Membrane potential and cancer progression. Front. Physiol. 4:185, 2013.CrossRefGoogle Scholar
  54. 54.
    Young, J. L., and A. J. Engler. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2014

Authors and Affiliations

  • Jen-Yu Lan
    • 1
  • Corin Williams
    • 1
  • Michael Levin
    • 2
    • 3
  • Lauren Deems BlackIII
    • 1
    • 4
  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA
  2. 2.Department of BiologyTufts UniversityMedfordUSA
  3. 3.Center for Regenerative and Developmental BiologyTufts UniversityMedfordUSA
  4. 4.Cellular, Molecular and Developmental Biology Program, Sackler Graduate School of Biomedical SciencesTufts University School of MedicineBostonUSA

Personalised recommendations