Apostolou, E., and K. Hochedlinger. Chromatin dynamics during cellular reprogramming. Nature 502:462–471, 2013.
Article
Google Scholar
Armond, J. W., K. Saha, A. A. Rana, C. J. Oates, R. Jaenisch, M. Nicodemi, and S. Mukherjee. A stochastic model dissects cell states in biological transition processes. Sci. Rep. 4:3692, 2014.
Barnes, C. P., S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59:1413–1433, 2007.
Article
Google Scholar
Beers, J., D. R. Gulbranson, N. George, L. I. Siniscalchi, J. Jones, J. A. Thomson, and G. Chen. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nat. Protoc. 7:2029–2040, 2012.
Chen, G., Z. Hou, D. R. Gulbranson, and J. A. Thomson. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7:240–248, 2010.
Article
Google Scholar
Chen, G., D. R. Gulbranson, Z. Hou, J. M. Bolin, V. Ruotti, M. D. Probasco, K. Smuga-Otto, S. E. Howden, N. R. Diol, N. E. Propson, R. Wagner, G. O. Lee, J. Antosiewicz-Bourget, J. M. Teng, and J. A. Thomson. Chemically defined conditions for human iPSC derivation and culture. Nat. Methods 8:424–429, 2011.
Craene, B. D., and G. Berx. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13:97–110, 2013.
Article
Google Scholar
de Jong, S. SIMPLS: an alternative approach to partial least squares regression. Chemometr. Intell. Lab. Syst. 18:251–263, 1993.
Article
Google Scholar
Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.
Article
Google Scholar
Downing, T. L., J. Soto, C. Morez, T. Houssin, A. Fritz, F. Yuan, J. Chu, S. Patel, D. V. Schaffer, and S. Li. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12:1154–1162, 2013.
Eriksson, L. Multi- and Megavariate Data Analysis, MKS Umetrics AB, 2006.
Feng, B., J.-H. Ng, J.-C. D. Heng, and H.-H. Ng. Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312, 2009.
Article
Google Scholar
Gaspar-Maia, A., A. Alajem, E. Meshorer, and M. Ramalho-Santos. Open chromatin in pluripotency and reprogramming. Nat. Rev. Mol. Cell Biol. 12:36–47, 2011.
Article
Google Scholar
Graf, T., and T. Enver. Forcing cells to change lineages. Nature 462:587–594, 2009.
Article
Google Scholar
Grskovic, M., A. Javaherian, B. Strulovici, and G. Q. Daley. Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat. Rev. Drug Discov. 10:915–929, 2011.
Google Scholar
Hanna, J. H., K. Saha, and R. Jaenisch. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143:508–525, 2010.
Article
Google Scholar
Hanna, J., K. Saha, B. Pando, J. van Zon, C. J. Lengner, M. P. Creyghton, A. van Oudenaarden, and R. Jaenisch. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601, 2009.
Haynes, J., J. Srivastava, N. Madson, T. Wittmann, and D. L. Barber. Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression. Mol. Biol. Cell 22:4750–4764, 2011.
Article
Google Scholar
Hockemeyer, D., F. Soldner, E. G. Cook, Q. Gao, M. Mitalipova, and R. Jaenisch. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3:346–353, 2008.
Jain, N., K. V. Iyer, A. Kumar, and G. V. Shivashankar. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:11349–11354, 2013.
Article
Google Scholar
Jiao, J., Y. Dang, Y. Yang, R. Gao, Y. Zhang, Z. Kou, X. F. Sun, and S. Gao. Promoting reprogramming by FGF2 reveals that the extracellular matrix is a barrier for reprogramming fibroblasts to pluripotency. Stem Cells 31:729–740, 2012.
Kim, I. L., S. Khetan, B. M. Baker, C. S. Chen, and J. A. Burdick. Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34:5571–5580, 2013.
Article
Google Scholar
Kohen, N. T., L. E. Little, and K. E. Healy. Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79, 2009.
Article
Google Scholar
Li, R., J. Liang, S. Ni, T. Zhou, X. Qing, H. Li, W. He, J. Chen, F. Li, Q. Zhuang, B. Qin, J. Xu, W. Li, J. Yang, Y. Gan, D. Qin, S. Feng, H. Song, D. Yang, B. Zhang, L. Zeng, L. Lai, M. A. Esteban, and D. Pei. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63, 2010.
Liu, X., H. Sun, J. Qi, L. Wang, S. He, J. Liu, C. Feng, C. Chen, W. Li, Y. Guo, D. Qin, G. Pan, J. Chen, D. Pei, and H. Zheng. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nat. Cell Biol. 15:829–838, 2013.
Mali, P., L. Yang, K. M. Esvelt, J. Aach, M. Guell, J. E. DiCarlo, J. E. Norville, and G. M. Church. RNA-guided human genome engineering via Cas9. Science 339:823–826, 2013.
Mattout, A., A. Biran, and E. Meshorer. Global epigenetic changes during somatic cell reprogramming to iPS cells. J. Mol. Cell Biol. 3:341–350, 2011.
Article
Google Scholar
McNulty, J. D., T. Klann, J. Sha, M. Salick, G. T. Knight, L. S. Turng, and R. S. Ashton. High-precision robotic microcontact printing (R-μCP) utilizing a vision guided selectively compliant articulated robotic arm. Lab Chip 14:1923–1930, 2014.
Mi, H.-Y., X. Jing, B. R. Jacques, L.-S. Turng, and X.-F. Peng. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: effect of solution rheological properties on fiber formation. J. Mater. Res. 28:2339–2350, 2013.
Article
Google Scholar
Ohgushi, M., M. Matsumura, M. Eiraku, K. Murakami, T. Aramaki, A. Nishiyama, K. Muguruma, T. Nakano, H. Suga, M. Ueno, T. Ishizaki, H. Suemori, S. Narumiya, H. Niwa, and Y. Sasai. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7:225–239, 2010.
Quintanilla, R. H., Jr., J. S. T. Asprer, C. Vaz, V. Tanavde, and U. Lakshmipathy. CD44 is a negative cell surface marker for pluripotent stem cell identification during human fibroblast reprogramming. PLoS ONE 9:e85419, 2014.
Rais, Y., A. Zviran, S. Geula, O. Gafni, E. Chomsky, S. Viukov, A. A. Mansour, I. Caspi, V. Krupalnik, M. Zerbib, I. Maza, N. Mor, D. Baran, L. Weinberger, D. A. Jaitin, D. Lara-Astiaso, R. Blecher-Gonen, Z. Shipony, Z. Mukamel, T. Hagai, S. Gilad, D. Amann-Zalcenstein, A. Tanay, I. Amit, N. Novershtern, and J. H. Hanna. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70, 2013.
Rnjak-Kovacina, J., S. G. Wise, Z. Li, P. K. Maitz, C. J. Young, Y. Wang, and A. S. Weiss. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32:6729–6736, 2011.
Saha, K., and R. Jaenisch. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595, 2009.
Article
Google Scholar
Saha, K., Y. Mei, C. M. Reisterer, N. K. Pyzocha, J. Yang, J. Muffat, M. C. Davies, M. R. Alexander, R. Langer, D. G. Anderson, and R. Jaenisch. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. PNAS 108:18714–18719, 2011.
Samavarchi-Tehrani, P., A. Golipour, L. David, H. K. Sung, T. A. Beyer, A. Datti, K. Woltjen, A. Nagy, J. L. Wrana. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7:64–77, 2010.
Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.
Shahbazian, M. D., and M. Grunstein. Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem. 76:75–100, 2007.
Article
Google Scholar
Shinagawa, T., T. Takagi, D. Tsukamoto, C. Tomaru, L. M. Huynh, P. Sivaraman, T. Kumarevel, K. Inoue, R. Nakato, Y. Katou, T. Sado, S. Takahashi, A. Ogura, K. Shirahige, and S. Ishii. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14:217–227, 2014.
Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.
Article
Google Scholar
Takahashi, K., and S. Yamanaka. Induced pluripotent stem cells in medicine and biology. Development 140:2457–2461, 2013.
Article
Google Scholar
Teo, W., and S. Ramakrishna. A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89, 2006.
Article
Google Scholar
Wang, X., M. R. Salick, X. Wang, T. Cordie, W. Han, Y. Peng, Q. Li, and L. S. Turng. Poly (ε-caprolactone) nanofibers with a self-induced nanohybrid Shish–Kebab structure mimicking collagen fibrils. Biomacromolecules 14:3557–3569, 2013.
Watanabe, K., M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, S. Nishikawa, K. Muguruma, and Y. Sasai. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25:681–686, 2007.
Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.