Skip to main content

Endometriotic Epithelial Cell Response to Macrophage-Secreted Factors is Dependent on Extracellular Matrix Context

Abstract

Endometriosis is a chronic disease in which epithelial and stromal cells that resemble the eutopic endometrium are found in ectopic lesions. In order to examine how microenvironmental factors such as extracellular matrix (ECM) and macrophages influence disease progression, 12Z (an immortalized ectopic epithelial cell line) were cultured on tissue culture plastic or in gels of recombinant basement membrane (rBM) or collagen I. Unlike cells in other conditions, cells in rBM formed multi-cellular structures in a 67 kDa non-integrin laminin receptor (67LR)-dependent manner. To examine the impact of macrophage-secreted factors on cell behavior, 12Z cells on all three substrates were treated with conditioned media from differentiated THP-1 (an immortalized monocytic cell line). Significant proliferation and invasion was observed only with cells cultured in rBM, indicating that ECM cues help dictate cell response to soluble signals. Cells cultured on rBM were then treated with individual cytokines detected in the conditioned media, with increased proliferation observed following exposure to interleukin-8 (CXCL8/IL-8) and both increased proliferation and invasion following treatment with heparin-binding EGF-like growth factor (HB-EGF). This study suggests that rBM gels can be used to induce in vitro lesion formation in order to identify soluble factors that influence proliferation and invasion.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Aplin, J. D. Endometrial extracellular matrix. In: The Endometrium: Molecular, Cellular, and Clinical Perspectives2nd, edited by J. D. Aplin, A. T. Fazleabas, S. R. Glasser, and L. C. Giudice. Boca Raton, FL: Informa UK Ltd., 2008, pp. 364–378.

    Chapter  Google Scholar 

  2. Arnold, J. T., D. G. Kaufman, M. Seppala, and B. A. Lessey. Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum. Reprod. 16:836–845, 2001.

    Article  Google Scholar 

  3. Bacci, M., A. Capobianco, A. Monno, L. Cottone, F. Di Puppo, B. Camisa, M. Mariani, C. Brignole, M. Ponzoni, S. Ferrari, P. Panina-Bordignon, A. A. Manfredi, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am. J. Pathol. 175:547–556, 2009.

    Article  Google Scholar 

  4. Barcellos-Hoff, M. H., J. Aggeler, T. G. Ram, and M. J. Bissell. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235, 1989.

    Google Scholar 

  5. Bauvois, B., and S. Roth. Initial adhesion of murine fibroblasts to collagen and fibronectin occurs by two mechanisms. Cell Biochem. Funct. 5:281–287, 1987.

    Article  Google Scholar 

  6. Beliard, A., J. Donnez, M. Nisolle, and J. M. Foidart. Localization of laminin, fibronectin, E-cadherin, and integrins in endometrium and endometriosis. Fertil. Steril. 67:266–272, 1997.

    Article  Google Scholar 

  7. Bentin-Ley, U., B. Pedersen, S. Lindenberg, J. F. Larsen, L. Hamberger, and T. Horn. Isolation and culture of human endometrial cells in a three-dimensional culture system. J. Reprod. Fertil. 101:327–332, 1994.

    Article  Google Scholar 

  8. Berrier, A. L., and K. M. Yamada. Cell-matrix adhesion. J. Cell. Physiol. 213:565–573, 2007.

    Article  Google Scholar 

  9. Bersinger, N. A., S. von Roten, D. M. Wunder, L. Raio, E. Dreher, and M. D. Mueller. PAPP-A and osteoprotegerin, together with interleukin-8 and RANTES, are elevated in the peritoneal fluid of women with endometriosis. Am. J. Obstet. Gynecol. 195:103–108, 2006.

    Article  Google Scholar 

  10. Brown, X. Q., E. Bartolak-Suki, C. Williams, M. L. Walker, V. M. Weaver, and J. Y. Wong. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis. J. Cell. Physiol. 225:115–122, 2010.

    Article  Google Scholar 

  11. Bulun, S. E. Endometriosis. N. Engl. J. Med. 360:268–279, 2009.

    Article  Google Scholar 

  12. Callister, W. D. Fundamentals of Materials Science and Engineering: An Interactive E-Text. Somerset, NJ: Wiley, 2000.

    Google Scholar 

  13. Chacho, K. J., M. S. Chacho, P. J. Andresen, and A. Scommegna. Peritoneal fluid in patients with and without endometriosis: prostanoids and macrophages and their effect on the spermatozoa penetration assay. Am. J. Obstet. Gynecol. 154:1290–1299, 1986.

    Article  Google Scholar 

  14. Chetty, C., T. Khumalo, B. Da Costa Dias, U. Reusch, S. Knackmuss, M. Little, and S. F. Weiss. Anti-LRP/LR specific antibody IgG1-iS18 impedes adhesion and invasion of liver cancer cells. PLoS ONE 9:e96268, 2014.

    Article  Google Scholar 

  15. Classen-Linke, I., M. Kusche, R. Knauthe, and H. M. Beier. Establishment of a human endometrial cell culture system and characterization of its polarized hormone responsive epithelial cells. Cell Tissue Res. 287:171–185, 1997.

    Article  Google Scholar 

  16. Dunselman, G. A., M. G. Hendrix, P. X. Bouckaert, and J. L. Evers. Functional aspects of peritoneal macrophages in endometriosis of women. J. Reprod. Fertil. 82:707–710, 1988.

    Article  Google Scholar 

  17. Elenius, K., S. Paul, G. Allison, J. Sun, and M. Klagsbrun. Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J. 16:1268–1278, 1997.

    Article  Google Scholar 

  18. Eyster, K. M., K. A. Hansen, E. Winterton, O. Klinkova, D. Drappeau, and C. J. Mark-Kappeler. Reciprocal communication between endometrial stromal cells and macrophages. Reprod. Sci. 17:809–822, 2010.

    Article  Google Scholar 

  19. Falcone, T., and D. I. Lebovic. Clinical management of endometriosis. Obstet. Gynecol. 118:691–705, 2011.

    Article  Google Scholar 

  20. Fauconnier, A., and C. Chapron. Endometriosis and pelvic pain: epidemiological evidence of the relationship and implications. Hum. Reprod. Update 11:595–606, 2005.

    Article  Google Scholar 

  21. Giudice, L. C., and L. C. Kao. Endometriosis. Lancet 364:1789–1799, 2004.

    Article  Google Scholar 

  22. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    Article  Google Scholar 

  23. Grinnell, F., C. H. Ho, E. Tamariz, D. J. Lee, and G. Skuta. Dendritic fibroblasts in three-dimensional collagen matrices. Mol. Biol. Cell 14:384–395, 2003.

    Article  Google Scholar 

  24. Grund, E. M., D. Kagan, C. A. Tran, A. Zeitvogel, A. Starzinski-Powitz, S. Nataraja, and S. S. Palmer. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol. Pharmacol. 73:1394–1404, 2008.

    Article  Google Scholar 

  25. Gu, X., and K. S. Masters. Regulation of valvular interstitial cell calcification by adhesive peptide sequences. J. Biomed. Mater. Res. A 93:1620–1630, 2010.

    Google Scholar 

  26. Harrington, D. J., B. A. Lessey, V. Rai, A. Bergqvist, S. Kennedy, S. Manek, D. H. Barlow, and H. J. Mardon. Tenascin is differentially expressed in endometrium and endometriosis. J. Pathol. 187:242–248, 1999.

    Article  Google Scholar 

  27. Hayman, E. G., M. D. Pierschbacher, S. Suzuki, and E. Ruoslahti. Vitronectin—a major cell attachment-promoting protein in fetal bovine serum. Exp. Cell Res. 160:245–258, 1985.

    Article  Google Scholar 

  28. Hong, H., and J. P. Stegemann. 2D and 3D collagen and fibrin biopolymers promote specific ECM and integrin gene expression by vascular smooth muscle cells. J. Biomater. Sci. Polym. Ed. 19:1279–1293, 2008.

    Article  Google Scholar 

  29. Johnson, P. J., A. Tatara, D. A. McCreedy, A. Shiu, and S. E. Sakiyama-Elbert. Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6:5127–5137, 2010.

    Article  Google Scholar 

  30. Kim, J. H., and A. R. Asthagiri. Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J. Cell Sci. 124:1280–1287, 2011.

    Article  Google Scholar 

  31. Klemmt, P. A., J. G. Carver, P. Koninckx, E. J. McVeigh, and H. J. Mardon. Endometrial cells from women with endometriosis have increased adhesion and proliferative capacity in response to extracellular matrix components: towards a mechanistic model for endometriosis progression. Hum. Reprod. 22:3139–3147, 2007.

    Article  Google Scholar 

  32. Kondera-Anasz, Z., J. Sikora, A. Mielczarek-Palacz, and M. Jonca. Concentrations of interleukin (IL)-1alpha, IL-1 soluble receptor type II (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 123:198–203, 2005.

    Article  Google Scholar 

  33. Kreeger, P. K., J. W. Deck, T. K. Woodruff, and L. D. Shea. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 27:714–723, 2006.

    Article  Google Scholar 

  34. Kyama, C. M., S. Debrock, J. M. Mwenda, and T. M. D’Hooghe. Potential involvement of the immune system in the development of endometriosis. Reprod. Biol. Endocrinol. 1:123, 2003.

    Article  Google Scholar 

  35. Leach, R. E., R. Khalifa, N. D. Ramirez, S. K. Das, J. Wang, S. K. Dey, R. Romero, and D. R. Armant. Multiple roles for heparin-binding epidermal growth factor-like growth factor are suggested by its cell-specific expression during the human endometrial cycle and early placentation. J. Clin. Endocrinol. Metab. 84:3355–3363, 1999.

    Google Scholar 

  36. Lebovic, D. I., M. D. Mueller, and R. N. Taylor. Immunobiology of endometriosis. Fertil. Steril. 75:1–10, 2001.

    Article  Google Scholar 

  37. Lee, G. Y., P. A. Kenny, E. H. Lee, and M. J. Bissell. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4:359–365, 2007.

    Article  Google Scholar 

  38. Li, M. L., J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140, 1987.

    Article  Google Scholar 

  39. Li, D., J. Chen, Z. Gao, X. Li, X. Yan, Y. Xiong, and S. Wang. 67-kDa laminin receptor in human bile duct carcinoma. Eur. Surg. Res. 42:168–173, 2009.

    Article  Google Scholar 

  40. Li, M. Q., X. Z. Luo, Y. H. Meng, J. Mei, X. Y. Zhu, L. P. Jin, and D. J. Li. CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum. Reprod. 27:2107–2116, 2012.

    Article  Google Scholar 

  41. Lin, W., S. Chen, M. Li, B. Wang, X. Qu, and Y. Zhang. Expression of macrophage migration inhibitory factor in human endometriosis: relation to disease stage, menstrual cycle and infertility. J. Obstet. Gynaecol. Res. 36:344–351, 2010.

    Article  Google Scholar 

  42. Loh, F. H., A. Bongso, C. Y. Fong, D. R. Koh, S. H. Lee, and H. Q. Zhao. Effects of peritoneal macrophages from women with endometriosis on endometrial cellular proliferation in an in vitro coculture model. Fertil. Steril. 72:533–538, 1999.

    Article  Google Scholar 

  43. Lowell, C. A., and T. N. Mayadas. Overview: studying integrins in vivo. Methods Mol. Biol. 757:369–397, 2012.

    Article  Google Scholar 

  44. Malhotra, N., D. Karmakar, V. Tripathi, K. Luthra, and S. Kumar. Correlation of angiogenic cytokines-leptin and IL-8 in stage, type and presentation of endometriosis. Gynecol. Endocrinol. 28(3):224–227, 2012.

    Article  Google Scholar 

  45. Matsuzaki, S., and C. Darcha. Epithelial to mesenchymal transition-like and mesenchymal to epithelial transition-like processes might be involved in the pathogenesis of pelvic endometriosis. Hum. Reprod. 27:712–721, 2012.

    Article  Google Scholar 

  46. Miller, M. A., A. S. Meyer, M. T. Beste, Z. Lasisi, S. Reddy, K. W. Jeng, C. H. Chen, J. Han, K. Isaacson, L. G. Griffith, and D. A. Lauffenburger. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc. Natl. Acad. Sci. USA 110:E2074–E2083, 2013.

    Article  Google Scholar 

  47. Muranen, T., L. M. Selfors, D. T. Worster, M. P. Iwanicki, L. Song, F. C. Morales, S. Gao, G. B. Mills, and J. S. Brugge. Inhibition of PI3 K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21:227–239, 2012.

    Article  Google Scholar 

  48. Peyton, S. R., C. M. Ghajar, C. B. Khatiwala, and A. J. Putnam. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem. Biophys. 47:300–320, 2007.

    Article  Google Scholar 

  49. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4:38, 2006.

    Article  Google Scholar 

  50. Raub, C. B., A. J. Putnam, B. J. Tromberg, and S. C. George. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy. Acta Biomater. 6:4657–4665, 2010.

    Article  Google Scholar 

  51. Rodriguez, K. J., and K. S. Masters. Regulation of valvular interstitial cell calcification by components of the extracellular matrix. J. Biomed. Mater. Res. A 90:1043–1053, 2009.

    Article  Google Scholar 

  52. Scholl, B., N. A. Bersinger, A. Kuhn, and M. D. Mueller. Correlation between symptoms of pain and peritoneal fluid inflammatory cytokine concentrations in endometriosis. Gynecol. Endocrinol. 25:701–706, 2009.

    Article  Google Scholar 

  53. Song, T., C. H. Choi, Y. J. Cho, C. O. Sung, S. Y. Song, T. J. Kim, D. S. Bae, J. W. Lee, and B. G. Kim. Expression of 67-kDa laminin receptor was associated with tumor progression and poor prognosis in epithelial ovarian cancer. Gynecol. Oncol. 125:427–432, 2012.

    Article  Google Scholar 

  54. Soofi, S. S., J. A. Last, S. J. Liliensiek, P. F. Nealey, and C. J. Murphy. The elastic modulus of Matrigel as determined by atomic force microscopy. J. Struct. Biol. 167:216–219, 2009.

    Article  Google Scholar 

  55. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2:442–454, 2002.

    Article  Google Scholar 

  56. Tsuchiya, S., Y. Kobayashi, Y. Goto, H. Okumura, S. Nakae, T. Konno, and K. Tada. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42:1530–1536, 1982.

    Google Scholar 

  57. Vercellini, P., P. Vigano, E. Somigliana, and L. Fedele. Endometriosis: pathogenesis and treatment. Nat. Rev. Endocrinol. 10:261–275, 2014.

    Google Scholar 

  58. Waugh, D. J., and C. Wilson. The interleukin-8 pathway in cancer. Clin. Cancer Res. 14:6735–6741, 2008.

    Article  Google Scholar 

  59. Weaver, V. M., A. H. Fischer, O. W. Peterson, and M. J. Bissell. The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74:833–851, 1996.

    Article  Google Scholar 

  60. Wu, M. Y., and H. N. Ho. The role of cytokines in endometriosis. Am. J. Reprod. Immunol. 49:285–296, 2003.

    Article  Google Scholar 

  61. Wu, Y., A. Starzinski-Powitz, and S. W. Guo. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappaB in immortalized endometriotic cells and their suppression by trichostatin A. Gynecol. Obstet. Investig. 70:23–33, 2010.

    Article  Google Scholar 

  62. Yang, J., J. Richards, P. Bowman, R. Guzman, J. Enami, K. McCormick, S. Hamamoto, D. Pitelka, and S. Nandi. Sustained growth and three-dimensional organization of primary mammary tumor epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 76:3401–3405, 1979.

    Article  Google Scholar 

  63. Yoo, H. J., D. H. Barlow, and H. J. Mardon. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev. Genet. 21:102–108, 1997.

    Article  Google Scholar 

  64. Zeitvogel, A., R. Baumann, and A. Starzinski-Powitz. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am. J. Pathol. 159:1839–1852, 2001.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Anthony Desotell and Danielle Bourgeois for help with the ErbB ligand ELISAs, Adriana Rodriguez for assistance with the proliferation experiments, Alex LaPerle for providing the ECM adsorption protocols, and the imaging assistance of the Laboratory for Optical and Computational Instrumentation (LOCI) at the University of Wisconsin-Madison. We gratefully acknowledge Dr. Kristyn Masters and Dr. Brenda Ogle for use of the time-lapse microscope. Funding for this work was provided by NSF CBET-0951613 (P.K.K.), American Cancer Society RSG-13-026-01-CSM (P.K.K.), UW-Madison Graduate Research School Grant (P.K.K.), and a NSF GRFP (M.J.C.).

Conflict of interest

Kathryn Pollock, Taylor Jaraczewski, Molly J. Carroll, and Pamela Kreeger declare that they have no conflicts of interest. Dan Lebovic is part of a multi-center endometriosis trial for AbbVie Pharmaceuticals and has received a contribution from UpToDate, Inc.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela K. Kreeger.

Additional information

This paper is part of the 2014 Young Innovators Issue.

Kathryn Pollock and Taylor J. Jaraczewski have contributed equally to this work.

Pamela Kreeger earned a BS in Chemistry from Valparaiso University and a PhD in Chemical Engineering at Northwestern University, where she was a NDSEG fellow. In her thesis work in the laboratories of Dr. Lonnie Shea and Dr. Teresa Woodruff, she developed a novel 3D culture system for ovarian follicles. She went on to an American Cancer Society post-doctoral fellowship in Dr. Doug Lauffenburger’s laboratory at MIT, where she utilized multivariate analysis tools to examine the impact of RAS mutations in colon cancer. Dr. Kreeger began as an Assistant Professor in Biomedical Engineering at the University of Wisconsin-Madison in 2009. Her lab utilizes tools from systems biology and tissue engineering to determine how the interactions between multiple components of the disease microenvironment influence cellular phenotypic decisions. She is the recipient of a NSF CAREER award, is an American Cancer Society Research Scholar, and was named a 2014 Emerging Investigator by Chemical Communications (Photo credit: David Nevala Photography).

figure a

Associate Editor David Mooney oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3676 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pollock, K., Jaraczewski, T.J., Carroll, M.J. et al. Endometriotic Epithelial Cell Response to Macrophage-Secreted Factors is Dependent on Extracellular Matrix Context. Cel. Mol. Bioeng. 7, 409–420 (2014). https://doi.org/10.1007/s12195-014-0339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0339-6

Keywords

  • Endometriosis
  • 3D culture
  • Heparin-binding EGF-like growth factor (HB-EGF)
  • CXCL8
  • Basement membrane