Skip to main content
Log in

Microtubules Mechanically Regulate Cell Adhesion Strengthening Via Cell Shape

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cell adhesion strengthening is a complex mechanical and biochemical process involving receptor binding, cytoskeletal reorganization, and morphological changes. Actin-myosin contractility has been established to drive focal adhesion assembly and adhesion strengthening; yet while microtubules are believed to balance contractile elements, their role in adhesion strength has not been investigated. A hydrodynamic adhesion assay and micropatterned surfaces to control cell shape were used to analyze the interdependent effects of microtubule inhibition and serum-modulated cytoskeletal tension on adhesion strength. Microtubule disruption enhanced contractility and focal adhesion assembly in serum, however only serum free conditions made cells susceptible to microtubule disruption in terms of spreading, morphology and adhesion strength. Forcing cells to remain spherical by micropatterning resulted in reduced adhesion strength after microtubule disruption in the presence of serum, and the temporal evolution of adhesion strength of spreading cells was observed to be strongly regulated by microtubules. Together these results, along with previous studies of contractility, establish that a tightly controlled intracellular force balance is required for the cell to reach its maximum adhesion strength and that cells are more sensitive to perturbations before they are fully spread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balaban, N. Q., U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466–472, 2001.

    Google Scholar 

  2. Ballestrem, C., B. Wehrle-Haller, B. Hinz, and B. A. Imhof. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell 11:2999–3012, 2000.

    Article  Google Scholar 

  3. Berrier, A. L., and K. M. Yamada. Cell-matrix adhesion. J. Cell. Physiol. 213:565–573, 2007.

    Article  Google Scholar 

  4. Bershadsky, A., A. Chausovsky, E. Becker, A. Lyubimova, and B. Geiger. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6:1279–1289, 1996.

    Google Scholar 

  5. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.

    Google Scholar 

  6. Chen, C. S., and D. E. Ingber. Tensegrity and mechanoregulation: from skeleton to cytoskeleton. Osteoarthr. Cartil. 7:81–94, 1999.

    Google Scholar 

  7. Chicurel, M. E., C. S. Chen, and D. E. Ingber. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10:232–239, 1998.

    Google Scholar 

  8. Chrzanowska-Wodnicka, M., and K. Burridge. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–1415, 1996.

    Google Scholar 

  9. Coyer, S. R., A. Singh, D. W. Dumbauld, D. A. Calderwood, S. W. Craig, E. Delamarche, and A. J. Garcia. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 125:5110–5123, 2012.

    Google Scholar 

  10. Digman, M. A., C. M. Brown, A. R. Horwitz, W. W. Mantulin, and E. Gratton. Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys. J. 94:2819–2831, 2008.

    Google Scholar 

  11. Dumbauld, D. W., H. Shin, N. D. Gallant, K. E. Michael, H. Radhakrishna, and A. J. Garcia. Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J. Cell. Physiol. 223:746–756, 2010.

    Google Scholar 

  12. Elineni, K. K., and N. D. Gallant. Regulation of cell adhesion strength by peripheral focal adhesion distribution. Biophys. J. 101:2903–2911, 2011.

    Google Scholar 

  13. Evans, E. A. Detailed mechanics of membrane–membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges. Biophys. J. 48:185–192, 1985.

    Google Scholar 

  14. Ezzell, R. M., W. H. Goldmann, N. Wang, N. Parasharama, and D. E. Ingber. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp. Cell Res. 231:14–26, 1997.

    Google Scholar 

  15. Finkelstein, E., W. Chang, P. H. Chao, D. Gruber, A. Minden, C. T. Hung, and J. C. Bulinski. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3t3 fibroblasts. J. Cell Sci. 117:1533–1545, 2004.

    Google Scholar 

  16. Gallant, N. D., J. R. Capadona, A. B. Frazier, D. M. Collard, and A. J. Garcia. Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir 18:5579–5584, 2002.

    Google Scholar 

  17. Gallant, N. D., and A. J. Garcia. Model of integrin-mediated cell adhesion strengthening. J. Biomech. 40:1301–1309, 2007.

    Google Scholar 

  18. Gallant, N. D., K. E. Michael, and A. J. Garcia. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 16:4329–4340, 2005.

    Google Scholar 

  19. Garcia, A. J., and D. Boettiger. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials 20:2427–2433, 1999.

    Google Scholar 

  20. Garcia, A. J., P. Ducheyne, and D. Boettiger. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials 18:1091–1098, 1997.

    Google Scholar 

  21. Garcia, A. J., and N. D. Gallant. Stick and grip—measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem. Biophys. 39:61–73, 2003.

    Google Scholar 

  22. Garcia, A. J., F. Huber, and D. Boettiger. Force required to break alpha5beta1 integrin-fibronectin bonds in intact adherent cells is sensitive to integrin activation state. J. Biol. Chem. 273:10988–10993, 1998.

    Google Scholar 

  23. Garcia, A. J., J. Takagi, and D. Boettiger. Two-stage activation for alpha5beta1 integrin binding to surface- adsorbed fibronectin. J. Biol. Chem. 273:34710–34715, 1998.

    Google Scholar 

  24. Geiger, B., A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2:793–805, 2001.

    Google Scholar 

  25. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687, 2002.

    Google Scholar 

  26. Kadi, A., V. Pichard, M. Lehmann, C. Briand, D. Braguer, J. Marvaldi, J. B. Rognoni, and J. Luis. Effect of microtubule disruption on cell adhesion and spreading. Biochem. Biophys. Res. Commun. 246:690–695, 1998.

    Google Scholar 

  27. Lotz, M. M., C. A. Burdsal, H. P. Erickson, and D. R. McClay. Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J. Cell Biol. 109:1795–1805, 1989.

    Google Scholar 

  28. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.

    Google Scholar 

  29. Ridley, A. J., and A. Hall. The small gtp-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399, 1992.

    Google Scholar 

  30. Small, J. V., and I. Kaverina. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin. Cell Biol. 15:40–47, 2003.

    Google Scholar 

  31. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    Google Scholar 

  32. Wang, N., K. Naruse, D. Stamenovic, J. J. Fredberg, S. M. Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, and D. E. Ingber. Mechanical behavior in living cells consistent with the tensegrity model. Cell 98:7765–7770, 2001.

    Google Scholar 

  33. Watanabe, T., J. Noritake, and K. Kaibuchi. Regulation of microtubules in cell migration. Trends Cell Biol. 15:76–83, 2005.

    Google Scholar 

Download references

Acknowledgments

The authors thank Sarah McMaster for assistance with immunostaining and the University of South Florida Nanotechnology Research and Education Center for providing the resources to design and fabricate the templates used in microcontact printing. This work was partially supported by the National Science Foundation (NSF CAREER DMR-1056475).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Gallant.

Additional information

Associate Editor Daniel Fletcher oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elineni, K.K., Gallant, N.D. Microtubules Mechanically Regulate Cell Adhesion Strengthening Via Cell Shape. Cel. Mol. Bioeng. 7, 136–144 (2014). https://doi.org/10.1007/s12195-013-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0316-5

Keywords

Navigation