Cellular and Molecular Bioengineering

, Volume 7, Issue 1, pp 26–34 | Cite as

Substrates with Engineered Step Changes in Rigidity Induce Traction Force Polarity and Durotaxis

  • Mark T. Breckenridge
  • Ravi A. Desai
  • Michael T. Yang
  • Jianping FuEmail author
  • Christopher S. ChenEmail author


Rigidity sensing plays a fundamental role in multiple cell functions ranging from migration, to proliferation and differentiation (Engler et al., Cell 126:677–689, 2006; Lo et al., Biophys. J. 79:144–152, 2000; Wells, Hepatology 47:1394–1400, 2008; Zoldan et al., Biomaterials 32:9612–9621, 2011). During migration, single cells have been reported to preferentially move toward more rigid regions of a substrate in a process termed durotaxis. Durotaxis could contribute to cell migration in wound healing and gastrulation, where local gradients in tissue rigidity have been described. Despite the potential importance of this phenomenon to physiology and disease, it remains unclear how rigidity guides these behaviors and the underlying cellular and molecular mechanisms. To investigate the functional role of subcellular distribution and dynamics of cellular traction forces during durotaxis, we developed a unique microfabrication strategy to generate elastomeric micropost arrays patterned with regions exhibiting two different rigidities juxtaposed next to each other. After initial cell attachment on the rigidity boundary of the micropost array, NIH 3T3 fibroblasts were observed to preferentially migrate toward the rigid region of the micropost array, indicative of durotaxis. Additionally, cells bridging two rigidities across the rigidity boundary on the micropost array developed stronger traction forces on the more rigid side of the substrate indistinguishable from forces generated by cells exclusively seeded on rigid regions of the micropost array. Together, our results highlighted the utility of step-rigidity micropost arrays to investigate the functional role of traction forces in rigidity sensing and durotaxis, suggesting that cells could sense substrate rigidity locally to induce an asymmetrical intracellular traction force distribution to contribute to durotaxis.


Durotaxis Cell migration Rigidity sensing Mechanotransduction Microfabrication 



We acknowledge financial support from the National Institutes of Health (EB00262, HL73305, and GM74048), the Penn Institute for Regenerative Medicine, the Nano/Bio Interface Center, and the Center for Musculoskeletal Disorders of the University of Pennsylvania. J. F. was partially funded by the American Heart Association Postdoctoral Fellowship, and R. D. was supported by a National Science Foundation Fellowship. We thank Pan Mao for assistance in scanning electron microscopy. The M.I.T. Microsystems Technology Laboratories is acknowledged for support in cleanroom fabrication.

Supplementary material

12195_2013_307_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1380 kb)


  1. 1.
    Desai, R. A., L. Gao, S. Raghavan, W. F. Liu, and C. S. Chen. Cell polarity triggered by cell-cell adhesion via E-cadherin. J. Cell Sci. 122:905–911, 2009.CrossRefGoogle Scholar
  2. 2.
    Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.CrossRefGoogle Scholar
  3. 3.
    Dupin, I., E. Camand, and S. Etienne-Manneville. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol. 185:779–786, 2009.CrossRefGoogle Scholar
  4. 4.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefGoogle Scholar
  5. 5.
    Fu, J., et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–736, 2010.CrossRefGoogle Scholar
  6. 6.
    Ghassemi, S., et al. Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements. J. Vac. Sci. Technol. B 26:2549–2553, 2008.CrossRefGoogle Scholar
  7. 7.
    Ghassemi, S., et al. Fabrication of elastomer pillar arrays with modulated stiffness for cellular force measurements. J. Vac. Sci. Technol. B 26:2549–2553, 2008.CrossRefGoogle Scholar
  8. 8.
    Gilbert, P. M., et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081, 2010.CrossRefGoogle Scholar
  9. 9.
    Hoffecker, I. T., W-h Guo, and Y-l Wang. Assessing the spatial resolution of cellular rigidity sensing using a micropatterned hydrogel-photoresist composite. Lab. Chip 11:3538–3544, 2011. doi: 10.1039/c1lc20504h.CrossRefGoogle Scholar
  10. 10.
    Isenberg, B. C., P. A. DiMilla, M. Walker, S. Kim, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97:1313–1322, 2009.CrossRefGoogle Scholar
  11. 11.
    Jiang, X., D. A. Bruzewicz, A. P. Wong, M. Piel, and G. M. Whitesides. Directing cell migration with asymmetric micropatterns. Proc. Natl Acad. Sci. U.S.A. 102:975–978, 2005. doi: 10.1073/pnas.0408954102.CrossRefGoogle Scholar
  12. 12.
    Liu, Z., et al. Mechanical tugging force regulates the size of cell-cell junctions. Proc. Natl Acad. Sci. U.S.A. 107:9944–9949, 2010.CrossRefGoogle Scholar
  13. 13.
    Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.CrossRefGoogle Scholar
  14. 14.
    Lo, C. M., et al. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell 15:982–989, 2004.CrossRefGoogle Scholar
  15. 15.
    Lopez, J. I., I. Kang, W. K. You, D. M. McDonald, and V. M. Weaver. In situ force mapping of mammary gland transformation. Integr. Biol. (Camb) 3:910–921, 2011.CrossRefGoogle Scholar
  16. 16.
    Maruthamuthu, V., B. Sabass, U. S. Schwarz, and M. L. Gardel. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc. Natl Acad. Sci. U.S.A. 108:4708–4713, 2011.CrossRefGoogle Scholar
  17. 17.
    Ng, M. R., A. Besser, G. Danuser, and J. S. Brugge. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199:545–563, 2012.CrossRefGoogle Scholar
  18. 18.
    Plotnikov, S. V., A. M. Pasapera, B. Sabass, and C. M. waterman. force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527 (2012).Google Scholar
  19. 19.
    Raab, M., et al. Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199:669–683, 2012.CrossRefGoogle Scholar
  20. 20.
    Saez, A., A. Buguin, P. Silberzan, and B. Ladoux. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89:L52–L54, 2005.CrossRefGoogle Scholar
  21. 21.
    Sochol, R. D., A. T. Higa, R. R. R. Janairo, S. Li, and L. W. Lin. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7:4606–4609, 2011.CrossRefGoogle Scholar
  22. 22.
    Sun, Y., C. S. Chen, and J. Fu. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41:519–542, 2012. doi: 10.1146/annurev-biophys-042910-155306.CrossRefGoogle Scholar
  23. 23.
    Sun, Y., L. T. Jiang, R. Okada, and J. Fu. UV-modulated substrate rigidity for multiscale study of mechanoresponsive cellular behaviors. Langmuir 28:10789–10796.Google Scholar
  24. 24.
    Tee, S. Y., J. Fu, C. S. Chen, and P. A. Janmey. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100:L25–L27, 2011.CrossRefGoogle Scholar
  25. 25.
    Théry, M., et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. U.S.A. 103:19771–19776, 2006. doi: 10.1073/pnas.0609267103.CrossRefGoogle Scholar
  26. 26.
    Trichet, L., et al. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl Acad. Sci. U.S.A. 109:6933–6938, 2012.CrossRefGoogle Scholar
  27. 27.
    Vicente-Manzanares, M., K. Newell-Litwa, A. I. Bachir, L. A. Whitmore, and A. R. Horwitz. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front–back polarity in migrating cells. J. Cell Biol. 193:381–396, 2011. doi: 10.1083/jcb.201012159.CrossRefGoogle Scholar
  28. 28.
    Vincent, L. G., Y. S. Choi, B. Alonso-Latorre, J. C. del Álamo, and A. J. Engler. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8:472–484, 2013. doi: 10.1002/biot.201200205.CrossRefGoogle Scholar
  29. 29.
    Wang, H.-B., M. Dembo, S. K. Hanks, and Y-l Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. U.S.A. 98:11295–11300, 2001. doi: 10.1073/pnas.201201198.CrossRefGoogle Scholar
  30. 30.
    Weber, G. F., M. A. Bjerke, and D. W. DeSimone. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22:104–115, 2012.CrossRefGoogle Scholar
  31. 31.
    Wells, R. G. The role of matrix stiffness in regulating cell behavior. Hepatology 47:1394–1400, 2008.CrossRefGoogle Scholar
  32. 32.
    Weng, S., and J. Fu. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32:9584–9593, 2011.CrossRefGoogle Scholar
  33. 33.
    Yang, M. T., J. Fu, Y.-K. Wang, R. A. Desai, and C. S. Chen. Assaying stem cell mechanobiology on microfabricated elastomeric substrates with geometrically modulated rigidity. Nat. Protoc. 6:187–213, 2011.CrossRefGoogle Scholar
  34. 34.
    Yang, M. T., N. J. Sniadecki, and C. S. Chen. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19:3119–3123, 2007.Google Scholar
  35. 35.
    Yeung, T., et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.CrossRefGoogle Scholar
  36. 36.
    Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.CrossRefGoogle Scholar
  37. 37.
    Zoldan, J., et al. The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 32:9612–9621, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Mark T. Breckenridge
    • 1
  • Ravi A. Desai
    • 1
    • 2
    • 3
  • Michael T. Yang
    • 1
  • Jianping Fu
    • 1
    • 4
    Email author
  • Christopher S. Chen
    • 1
    • 5
    • 6
    Email author
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  3. 3.National Institute for Medical Research and University College LondonLondonUK
  4. 4.Department of Mechanical and Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  5. 5.Department of Biomedical EngineeringBoston UniversityBostonUSA
  6. 6.The Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonUSA

Personalised recommendations