Skip to main content

Diversity in Dimerization Topologies Enables Differential Control of Receptor Tyrosine Kinase Phosphorylation Dynamics


Within the receptor tyrosine kinase (RTK) super-family there is natural diversity in mechanisms leading to RTK dimerization, but the impact on receptor-mediated signaling is not well understood. Using parameters from studies of epidermal growth factor receptor (EGFR) and considering effects of ligand binding, receptor dimerization, and receptor phosphorylation and dephosphorylation, we developed computational models to compare the effects of dimerization through direct extracellular receptor–receptor contacts (receptor-mediated dimerization, RMD) or through indirect receptor–receptor interactions facilitated by an interposed bivalent ligand (ligand-mediated dimerization, LMD). We found that the LMD topology enables different and complex regulatory modes of signaling vs. RMD, and that this complexity depends upon differences in time scales for ligand binding, dimerization, and receptor dephosphorylation. Compared to RMD, the LMD topology: (1) Enables non-monotonic phosphorylation dynamic response to ligand binding; (2) favors an amplification process wherein a single receptor-ligand binding event produces more than two phosphorylated receptors within the time scale for receptor dephosphorylation; and (3) generates greater phosphorylation sensitivity to changes in receptor expression at sub-saturating ligand concentrations and to changes in preformed receptor dimer abundance. Thus, different dimerization mechanisms may allow RTKs to initiate signaling in very different ways, and our models provide a framework for exploring this complexity.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Barton, W. A., D. Tzvetkova-Robev, E. P. Miranda, M. V. Kolev, K. R. Rajashankar, J. P. Himanen, and D. B. Nikolov. Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2-Tie2 complex. Nat. Struct. Mol. Biol. 13:524–532, 2006.

    Article  Google Scholar 

  2. 2.

    Bradshaw, R. A., J. Murray-Rust, C. F. Ibanez, N. Q. McDonald, R. Lapatto, and T. L. Blundell. Nerve growth factor: structure/function relationships. Protein Sci. 3:1901–1913, 1994.

    Article  Google Scholar 

  3. 3.

    Chang, J. H., E. Mellon, N. C. Schanen, and J. L. Twiss. Persistent TrkA activity is necessary to maintain transcription in neuronally differentiated PC12 cells. J. Biol. Chem. 278:42877–42885, 2003.

    Article  Google Scholar 

  4. 4.

    Chevalier, S., V. Praloran, C. Smith, D. MacGrogan, N. Y. Ip, G. D. Yancopoulos, P. Brachet, A. Pouplard, and H. Gascan. Expression and functionality of the trkA proto-oncogene product/NGF receptor in undifferentiated hematopoietic cells. Blood 83:1479–1485, 1994.

    Google Scholar 

  5. 5.

    Dembo, M., and B. Goldstein. Theory of equilibrium binding of symmetric bivalent haptens to cell surface antibody: application to histamine release from basophils. J. Immunol. 121:345–353, 1978.

    Google Scholar 

  6. 6.

    Fan, Y. X., L. Wong, T. B. Deb, and G. R. Johnson. Ligand regulates epidermal growth factor receptor kinase specificity: activation increases preference for GAB1 and SHC versus autophosphorylation sites. J. Biol. Chem. 279:38143–38150, 2004.

    Article  Google Scholar 

  7. 7.

    French, A. R., D. K. Tadaki, S. K. Niyogi, and D. A. Lauffenburger. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J. Biol. Chem. 270:4334–4340, 1995.

    Article  Google Scholar 

  8. 8.

    Garrett, T. P., N. M. McKern, M. Lou, T. C. Elleman, T. E. Adams, G. O. Lovrecz, H. J. Zhu, F. Walker, M. J. Frenkel, P. A. Hoyne, R. N. Jorissen, E. C. Nice, A. W. Burgess, and C. W. Ward. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110:763–773, 2002.

    Article  Google Scholar 

  9. 9.

    Hendriks, B. S., L. K. Opresko, H. S. Wiley, and D. Lauffenburger. Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res. 63:1130–1137, 2003.

    Google Scholar 

  10. 10.

    Hendriks, B. S., L. K. Opresko, H. S. Wiley, and D. Lauffenburger. Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 278:23343–23351, 2003.

    Article  Google Scholar 

  11. 11.

    Himanen, J. P., and D. B. Nikolov. Eph signaling: a structural view. Trends Neurosci. 26:46–51, 2003.

    Article  Google Scholar 

  12. 12.

    Jencks, W. P. On the attribution and additivity of binding energies. Proc. Natl Acad. Sci. U.S.A. 78:4046–4050, 1981.

    Article  Google Scholar 

  13. 13.

    Kholodenko, B. N., O. V. Demin, G. Moehren, and J. B. Hoek. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274:30169–30181, 1999.

    Article  Google Scholar 

  14. 14.

    Kim, K. T., H. H. Choi, M. O. Steinmetz, B. Maco, R. A. Kammerer, S. Y. Ahn, H. Z. Kim, G. M. Lee, and G. Y. Koh. Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J. Biol. Chem. 280:20126–20131, 2005.

    Article  Google Scholar 

  15. 15.

    Lemmon, M. A., and J. Schlessinger. Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134, 2010.

    Article  Google Scholar 

  16. 16.

    Liu, P., T. Et. Cleveland, S. Bouyain, P. O. Byrne, P. A. Longo, and D. J. Leahy. A single ligand is sufficient to activate EGFR dimers. Proc. Natl Acad. Sci. U.S.A. 109:10861–10866, 2012.

  17. 17.

    MacGlashan, D. W., Jr., M. Dembo, and B. Goldstein. Test of a theory relating to the cross-linking of IgE antibody on the surface of human basophils. J. Immunol. 135:4129–4134, 1985.

    Google Scholar 

  18. 18.

    Mahadeo, D., L. Kaplan, M. V. Chao, and B. L. Hempstead. High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. Implications for multi-subunit polypeptide receptors. J. Biol. Chem. 269:6884–6891, 1994.

    Google Scholar 

  19. 19.

    Maliartchouk, S., and H. U. Saragovi. Optimal nerve growth factor trophic signals mediated by synergy of TrkA and p75 receptor-specific ligands. J. Neurosci. 17:6031–6037, 1997.

    Google Scholar 

  20. 20.

    Mischel, P. S., J. A. Umbach, S. Eskandari, S. G. Smith, C. B. Gundersen, and G. A. Zampighi. Nerve growth factor signals via preexisting TrkA receptor oligomers. Biophys. J. 83:968–976, 2002.

    Article  Google Scholar 

  21. 21.

    Monast, C. S., C. M. Furcht, and M. J. Lazzara. Computational analysis of the regulation of EGFR by protein tyrosine phosphatases. Biophys. J. 102:2012–2021, 2012.

    Article  Google Scholar 

  22. 22.

    Moriki, T., H. Maruyama, and I. N. Maruyama. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J. Mol. Biol. 311:1011–1026, 2001.

    Article  Google Scholar 

  23. 23.

    Myers, A. C., J. S. Kovach, and S. Vuk-Pavlovic. Binding, internalization, and intracellular processing of protein ligands. Derivation of rate constants by computer modeling. J. Biol. Chem. 262:6494–6499, 1987.

    Google Scholar 

  24. 24.

    Ogiso, H., R. Ishitani, O. Nureki, S. Fukai, M. Yamanaka, J. H. Kim, K. Saito, A. Sakamoto, M. Inoue, M. Shirouzu, and S. Yokoyama. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787, 2002.

    Article  Google Scholar 

  25. 25.

    Page, M. I., and W. P. Jencks. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl Acad. Sci. U.S.A. 68:1678–1683, 1971.

    Article  Google Scholar 

  26. 26.

    Perelson, A. S., C. DeLisi, and F. W. Wiegel. Cell surface dynamics: concepts and models. In: Some Mathematical Models of Receptor Clustering by Multivalent Ligands, edited by A. S. Perelson. New York: Marcel Dekker, Inc., 1984, pp 223–276.

  27. 27.

    Pflug, B. R., C. Dionne, D. R. Kaplan, J. Lynch, and D. Djakiew. Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136:262–268, 1995.

    Google Scholar 

  28. 28.

    Plotnikov, A. N., J. Schlessinger, S. R. Hubbard, and M. Mohammadi. Structural basis for FGF receptor dimerization and activation. Cell 98:641–650, 1999.

    Article  Google Scholar 

  29. 29.

    Purvis, J., V. Ilango, and R. Radhakrishnan. Role of network branching in eliciting differential short-term signaling responses in the hypersensitive epidermal growth factor receptor mutants implicated in lung cancer. Biotechnol. Prog. 24:540–553, 2008.

    Article  Google Scholar 

  30. 30.

    Sasagawa, S., Y. Ozaki, K. Fujita, and S. Kuroda. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7:365–373, 2005.

    Article  Google Scholar 

  31. 31.

    Schmidt, H., and M. Jirstrand. Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515, 2006.

    Article  Google Scholar 

  32. 32.

    Schoeberl, B., C. Eichler-Jonsson, E. D. Gilles, and G. Muller. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20:370–375, 2002.

    Article  Google Scholar 

  33. 33.

    Shen, J., and I. N. Maruyama. Nerve growth factor receptor TrkA exists as a preformed, yet inactive, dimer in living cells. FEBS Lett. 585:295–299, 2011.

    Article  Google Scholar 

  34. 34.

    Sutter, A., R. J. Riopelle, R. M. Harris-Warrick, and E. M. Shooter. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J. Biol. Chem. 254:5972–5982, 1979.

    Google Scholar 

  35. 35.

    Wehrman, T., X. He, B. Raab, A. Dukipatti, H. Blau, and K. C. Garcia. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53:25–38, 2007.

    Article  Google Scholar 

  36. 36.

    Yarden, Y., and M. X. Sliwkowski. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2:127–137, 2001.

    Article  Google Scholar 

  37. 37.

    Yu, X., K. D. Sharma, T. Takahashi, R. Iwamoto, and E. Mekada. Ligand-independent dimer formation of epidermal growth factor receptor (EGFR) is a step separable from ligand-induced EGFR signaling. Mol. Biol. Cell 13:2547–2557, 2002.

    Article  Google Scholar 

Download references


This work was supported by grant IRG-78-002-30 from the American Cancer Society. The authors also thank Janine Buonato for help in reviewing the manuscript.

Conflict of interest

The authors declare no conflicts of interest.

Author information



Corresponding author

Correspondence to Matthew J. Lazzara.

Additional information

Associate Editor William H. Guilford oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1: Amplification and dimer uncoupling. (A and B) The steady-state ratio of the number of phosphorylated receptors to the number of bound ligands (pR/L b) was calculated as a function of ligand concentration (L) for the indicated values of the dephosphorylation rate constant (k dp) with the (A) ligand-mediated dimerization (LMD) and (B) receptor-mediated dimerization (RMD) models. These calculations were made with a receptor dimer uncoupling rate constant 105-fold lower than the base value.

Figure S2: Qualitative comparison of model to published data. The percent of total receptor that is phosphorylated (pR) was calculated as a function of time for the indicated ligand concentrations (L) with the ligand-mediated dimerization (LMD) model. To match the experimental conditions described in the Discussion section, we set k L,f = 5 × 101 μM−1min−1, an experimentally measured value, and k L,r such that K D,NGF was equal to the experimentally measured value of 10−10 M. The 20 min time point from the experiment is indicated by the dashed vertical line.

Supplementary material 1 (TIFF 743 kb)

Supplementary material 2 (TIFF 707 kb)

Supplementary material 3 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Monast, C.S., Mehta, N. & Lazzara, M.J. Diversity in Dimerization Topologies Enables Differential Control of Receptor Tyrosine Kinase Phosphorylation Dynamics. Cel. Mol. Bioeng. 7, 86–98 (2014).

Download citation


  • Epidermal growth factor receptor (EGFR)
  • Tropomyosin-related kinase A (TrkA)
  • Dephosphorylation
  • Time scale
  • Ligand binding
  • Amplification