Skip to main content
Log in

Characterizing and Patterning Polyacrylamide Substrates Functionalized with N-Hydroxysuccinimide

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Polyacrylamide is a widely used material in cell mechanobiology research. Here, we validate and optimize a method to activate polyacrylamide substrates for protein patterning, resulting in a system with precise and independent control over the geometric and mechanical factors that cells perceive. Acrylic acid incorporated into the hydrogel provides functional sites for activation with N-hydroxysuccinimide, which in turn forms covalent bonds with proteins printed in microscale patterns. To validate and optimize substrate fabrication, we demonstrate that acrylic acid incorporates into the polymer, that is has no effect on Young’s modulus at up to 0.4 wt%, and that increasing concentrations of acrylic acid result in substrates with increasing amounts of protein bound to them. Finally, we demonstrate that cells attach and spread to substrates with protein patterned with electrohydrodynamic jet (e-jet) printing. The method represents an improvement over the most-widely used method to chemically activate polyacrylamide with sulfo-SANPAH. With further refinement, truly independent control over ligand density and stiffness is possible. These substrates are powerful platforms for exploring the interacting influence of substrate stiffness and ligand density on cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AAm:

Acrylamide

ANOVA:

Analysis of variance

APS:

Ammonium persulfate

bis:

N,N′-methylenebisacrylamide

BSA:

Bovine serum albumin

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

e-jet:

Electrohydrodynamic jet printing

HEPES:

4-(2-Hydroxyehtyl)-1-piperazineethanesulfonic acid

HBSS:

HEPES-buffered saline solution

MES:

2-(N-morpholino)ethane sulfonic acid

microBCA:

Micro bicinchoninic acid

NHS:

N-hydroxysuccinimide

PBS:

Phosphate-buffered saline

sulfo-SANPAH:

N-sulfosuccinimidyl-6-(4′-azino-2′-nitrophenylamino) hexanoate

TEMED:

N,N,N′,N′-tetramethylethylenediamine

References

  1. Aratyn-Schaus, Y., P. W. Oakes, J. Stricker, S. P. Winter, and M. L. Gardel. Preparation of compliant matrices for quantifying cellular contraction. J. Vis. Exp. 46, 2010. doi:10.3791/2173.

  2. Beningo, K. A., and Y.-L. Wang. Fc-receptor mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115:849–856, 2002.

    Google Scholar 

  3. Boudou, T., J. Ohayon, C. Picart, and P. Tracqui. An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43:6, 2006.

    Google Scholar 

  4. Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:2–3, 2008.

    Article  Google Scholar 

  5. Choi, H. K., J. U. Park, O. O. Park, P. M. Ferreira, J. G. Georgiadis, and J. A. Rogers. Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl. Phys. Lett. 92:12, 2008.

    Google Scholar 

  6. Damljanovic, V., B. C. Lagerholm, and K. Jacobson. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39:6, 2005.

    Article  Google Scholar 

  7. Diduch, D. R., M. R. Coe, C. Joyner, M. E. Owen, and G. Balian. 2 cell-lines from bone-marrow that differ in terms of collagen-synthesis, osteogenic characteristics, and matrix mineralization. J. Bone Joint Surg. Am. 75A:92–105, 1993.

    Google Scholar 

  8. Engler, A. J., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:1, 2004.

    Article  Google Scholar 

  9. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:4, 2006.

    Article  Google Scholar 

  10. Gaudet, C., W. A. Marganski, S. Kim, C. T. Brown, V. Gunderia, M. Dembo, and J. Y. Wong. Influence of type I collagen surface density on fibroblast spreading, motility, and contractility. Biophys. J. 85:5, 2003.

    Article  Google Scholar 

  11. Grabarek, Z., and J. Gergely. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185:1, 1990.

    Article  Google Scholar 

  12. Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66A:3, 2003.

    Article  Google Scholar 

  13. Grevesse, T., M. Versaevel, G. Circelli, S. Desprez, and S. Gabriele. A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues. Lab Chip 13:777–780, 2013.

    Article  Google Scholar 

  14. Hermanson, G. T. Bioconjugate Techniques (2nd ed.). Amsterdam: Academic Press, pp. 215–223, 2008.

    Google Scholar 

  15. Hermanson, G. T. Bioconjugate Techniques (2nd ed.). Amsterdam: Academic Press, pp. 562–568, 2008.

    Book  Google Scholar 

  16. Kandow, C. E., P. C. Georges, P. A. Janmey, and K. A. Beningo. Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol. 83:29–46, 2007.

    Article  Google Scholar 

  17. Khatiwala, C. B., S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290:6, 2006.

    Article  Google Scholar 

  18. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. 107:11, 2010.

    Article  Google Scholar 

  19. Li, Y., Z. Hu, and L. Chunfang. New method for measuring Poisson’s ratio in polymer gels. J. Appl. Polym. Sci. 50:6, 1993.

    Google Scholar 

  20. Liu, V. A., and S. N. Bhatia. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices 4:4, 2002.

    Article  Google Scholar 

  21. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4):483–495, 2004.

    Article  Google Scholar 

  22. Menter, P. Acrylamide Polymerization—A Practical Approach. Hercules: Bio-Rad Laboratories, 2000.

    Google Scholar 

  23. Nakajima, N., and Y. Ikada. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug. Chem. 6:1, 1995.

    Article  Google Scholar 

  24. Park, J. U., M. Hardy, S. J. Kang, K. Barton, K. Adair, D. K. Mukhopadhyay, C. Y. Lee, M. S. Strano, A. G. Alleyne, J. G. Georgiadis, P. M. Ferreira, and J. A. Rogers. High-resolution electrohydrodynamic jet printing. Nat. Mater. 6:10, 2007.

    Google Scholar 

  25. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:3, 2005.

    Article  Google Scholar 

  26. Pelham, R. J., and Y. L. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:25, 1997.

    Article  Google Scholar 

  27. Poellmann, M. J., K. L. Barton, S. Mishra, and A. J. Wagoner Johnson. Patterned hydrogel substrates for cell culture with electrohydrodynamic jet printing. Macromol. Biosci. 11(9):1164–1168, 2011.

    Article  Google Scholar 

  28. Poellmann, M. J., P. A. Harrell, W. P. King, and A. J. Wagoner Johnson. Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomater. 6(9):3514–3523, 2010.

    Article  Google Scholar 

  29. Saha, K., A. J. Keung, E. F. Irwin, Y. Li, L. Little, D. V. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:9, 2008.

    Article  Google Scholar 

  30. Sano, S., K. Kato, and Y. Ikada. Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 14:11, 1993.

    Article  Google Scholar 

  31. Trappmann, B., J. E. Gautrot, J. T. Connelly, D. G. T. Strange, Y. Li, M. L. Oyen, M. A. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J. P. Spatz, F. M. Watt, and W. T. S. Huck. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11(7):642–649, 2012.

    Article  Google Scholar 

  32. Tse, J. R., and A. J. Engler. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47:10, 2010.

    Google Scholar 

  33. Wang, D., K. Christensen, K. Chawla, G. Xiao, P. H. Krebsbach, and R. T. Franceschi. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J. Bone Miner. Res. 14:6, 1999.

    Article  Google Scholar 

  34. Wang, Y. L., and R. J. Pelham. Preparation of a flexible, porous, polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298:489–496, 1998.

    Article  Google Scholar 

  35. Winer, J. P., P. A. Janmey, M. E. McCormick, and M. Funaki. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng. Part A 15:1, 2009.

    Article  Google Scholar 

  36. Wong, J. Y., A. Velasco, P. Rajagopalan, and Q. Pham. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19(5):1908–1913, 2003.

    Article  Google Scholar 

  37. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marq, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:1, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript is based on work supported by the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems (Nano-CEMMS) at the University of Illinois, funded by the National Science Foundation under Grant DMI 0328162 and by NSF EAGER Grant CMMI 1264988. We acknowledge undergraduate researchers N. Patel, T. Perez, H. Friedman, and C. Frid for their assistance with some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy J. Wagoner Johnson.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poellmann, M.J., Wagoner Johnson, A.J. Characterizing and Patterning Polyacrylamide Substrates Functionalized with N-Hydroxysuccinimide. Cel. Mol. Bioeng. 6, 299–309 (2013). https://doi.org/10.1007/s12195-013-0288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-013-0288-5

Keywords

Navigation