Cellular and Molecular Bioengineering

, Volume 6, Issue 3, pp 253–265 | Cite as

Stiffness Increases Mononuclear Cell Transendothelial Migration



Cardiovascular diseases, including hypertension and the evolution of an atherosclerotic plaque alter the mechanics of the sub-endothelium. The extent to which either arterial softening or stiffening exacerbates or reduces mononuclear leukocyte infiltration from the bloodstream into the wall remains unclear. Mononuclear cell (MNC) transmigration was observed using an in vitro model of the inflamed human vascular endothelium on variable substrate stiffness. Briefly, human aortic endothelial cells were allowed to grow to confluency on gels of 1, 3, 5, 280 kPa, and on glass (~70 GPa), and then activated with TNF-α. Isolated human MNCs were allowed to transmigrate across the inflamed endothelium for 1 h. Fewer MNC transmigrated on soft compared to stiff substrates, yet the relative expression of ICAM-1 and VCAM-1, and the fraction of MNCs that become activated (or changed shape) did not change. Following MNC transendothelial migration the distribution of VCAM-1 is translocated from the apical to basal plasma membrane as revealed through immunofluorescence; since less MNCs transmigrate on soft subendothelial substrates, translocation of VCAM-1 was not observed. These results herein highlight that stiffer subendothelial substrates actually increase MNC transmigration, yet transmigration on stiff substrates can be abrogated by blocking ICAM-1.


Human Subendothelial stiffness Cell activation ICAM-1 VCAM-1 Monocytes HAEC In vitro Diapedese Actin 



Mononuclear cell


Human aortic endothelial cell


Transendothelial migration


Mean fluorescent intensity


Arbitrary units


Polymorphonuclear cell

Supplementary material

12195_2013_284_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 36 kb)
12195_2013_284_MOESM2_ESM.mov (2.2 mb)
Supplementary material 2 (MOV 2276 kb)
12195_2013_284_MOESM3_ESM.mov (2.2 mb)
Supplementary material 3 (MOV 2268 kb)


  1. 1.
    Akyildiz, A. C., L. Speelman, H. van Brummelen, M. A. Gutierrez, R. Virmani, A. van der Lugt, A. F. van der Steen, J. J. Wentzel, and F. J. Gijsen. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed. Eng. Online 10:25, 2011.CrossRefGoogle Scholar
  2. 2.
    Albelda, S. M., C. W. Smith, and P. A. Ward. Adhesion molecules and inflammatory injury. FASEB J Off. Publ. Fed. Am. Soc. Exp. Biol. 8:504–512, 1994.Google Scholar
  3. 3.
    Baldewsing, R. A., F. Mastik, J. A. Schaar, P. W. Serruys, and A. F. van der Steen. Young’s modulus reconstruction of vulnerable atherosclerotic plaque components using deformable curves. Ultrasound Med. Biol. 32:201–210, 2006.CrossRefGoogle Scholar
  4. 4.
    Birner, U., T. B. Issekutz, U. Walter, and A. C. Issekutz. The role of Alpha(4) and Lfa-1 integrins in selectin-independent monocyte and neutrophil migration to joints of rats with adjuvant arthritis. Int. Immunol. 12:141–150, 2000.CrossRefGoogle Scholar
  5. 5.
    Boutouyrie, P., A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, and S. Laurent. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 39:10–15, 2002.CrossRefGoogle Scholar
  6. 6.
    Chatzizisis, Y. S., and G. D. Giannoglou. Coronary hemodynamics and atherosclerotic wall stiffness: a vicious cycle. Med. Hypotheses 69:349–355, 2007.CrossRefGoogle Scholar
  7. 7.
    Chen, X., K. Pavlish, and J. N. Benoit. Myosin phosphorylation triggers actin polymerization in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 295:H2172–H2177, 2008.Google Scholar
  8. 8.
    Chien, S., S. Li, and Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.CrossRefGoogle Scholar
  9. 9.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.CrossRefGoogle Scholar
  10. 10.
    Fereol, S., R. Fodil, B. Labat, S. Galiacy, V. M. Laurent, B. Louis, D. Isabey, and E. Planus. Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil. Cytoskelet. 63:321–340, 2006.CrossRefGoogle Scholar
  11. 11.
    Ferreira, A. M., C. J. McNeil, K. M. Stallaert, K. A. Rogers, and M. Sandig. Interleukin-1beta reduces transcellular monocyte diapedesis and compromises endothelial adherens junction integrity. Microcirculation 12:563–579, 2005.CrossRefGoogle Scholar
  12. 12.
    Gaboury, J. P., and P. Kubes. Reductions in physiologic shear rates lead to Cd11/Cd18-dependent, selectin-independent leukocyte rolling in vivo. Blood 83:345–350, 1994.Google Scholar
  13. 13.
    Hansson, G. K., and A. Hermansson. The immune system in atherosclerosis. Nat. Immunol. 12:204–212, 2011.CrossRefGoogle Scholar
  14. 14.
    Hansson, G. K., J. Holm, and L. Jonasson. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135:169–175, 1989.Google Scholar
  15. 15.
    Hayenga, H. N., A. Trache, J. Trzeciakowski, and J. D. Humphrey. Regional atherosclerotic plaque properties in Apoe−/− mice quantified by atomic force, immunofluorescence, and light microscopy. J. Vasc. Res. 48:495–504, 2011.CrossRefGoogle Scholar
  16. 16.
    Huynh, J., N. Nishimura, K. Rana, J. M. Peloquin, J. P. Califano, C. R. Montague, M. R. King, C. B. Schaffer, and C. A. Reinhart-King. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3:112ra122, 2011.Google Scholar
  17. 17.
    Issekutz, A. C., D. Rowter, and T. A. Springer. Role of Icam-1 and Icam-2 and alternate Cd11/Cd18 ligands in neutrophil transendothelial migration. J. Leukoc. Biol. 65:117–126, 1999.Google Scholar
  18. 18.
    Kadono, T., G. M. Venturi, D. A. Steeber, and T. F. Tedder. Leukocyte rolling velocities and migration are optimized by cooperative L-selectin and intercellular adhesion molecule-1 functions. J. Immunol. 169:4542–4550, 2002.Google Scholar
  19. 19.
    Krishnan, R., D. D. Klumpers, C. Y. Park, K. Rajendran, X. Trepat, J. van Bezu, V. W. van Hinsbergh, C. V. Carman, J. D. Brain, J. J. Fredberg, J. P. Butler, and G. P. van Nieuw Amerongen. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300:C146–C154, 2011.Google Scholar
  20. 20.
    Kunkel, E. J., U. Jung, D. C. Bullard, K. E. Norman, B. A. Wolitzky, D. Vestweber, A. L. Beaudet, and K. Ley. Absence of trauma-induced leukocyte rolling in mice deficient in both P-selectin and intercellular adhesion molecule 1. J. Exp. Med. 183:57–65, 1996.CrossRefGoogle Scholar
  21. 21.
    Langer, H. F., and T. Chavakis. Leukocyte-endothelial interactions in inflammation. J. Cell. Mol. Med. 13:1211–1220, 2009.CrossRefGoogle Scholar
  22. 22.
    Laurent, S., S. Katsahian, C. Fassot, A. I. Tropeano, I. Gautier, B. Laloux, and P. Boutouyrie. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke J. Cereb. Circ. 34:1203–1206, 2003.CrossRefGoogle Scholar
  23. 23.
    Ley, K., C. Laudanna, M. I. Cybulsky, and S. Nourshargh. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7:678–689, 2007.CrossRefGoogle Scholar
  24. 24.
    Li, H., J. D. Cook, M. Terry, N. C. Spitzer, and M. B. Ferrari. Calcium transients regulate patterned actin assembly during myofibrillogenesis. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 229:231–242, 2004.Google Scholar
  25. 25.
    Libby, P., P. M. Ridker, and A. Maseri. Inflammation and atherosclerosis. Circulation 105:1135–1143, 2002.CrossRefGoogle Scholar
  26. 26.
    Liu, Z., N. J. Sniadecki, and C. S. Chen. Mechanical forces in endothelial cells during firm adhesion and early transmigration of human monocytes. Cell. Mol. Bioeng. 3:50–59, 2010.CrossRefGoogle Scholar
  27. 27.
    Millan, J., L. Hewlett, M. Glyn, D. Toomre, P. Clark, and A. J. Ridley. Lymphocyte transcellular migration occurs through recruitment of endothelial Icam-1 to caveola- and F-actin-rich domains. Nat. Cell Biol. 8:113–123, 2006.CrossRefGoogle Scholar
  28. 28.
    Muller, W. A. Mechanisms of transendothelial migration of leukocytes. Circ. Res. 105:223–230, 2009.CrossRefGoogle Scholar
  29. 29.
    Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol. 6:323–344, 2011.CrossRefGoogle Scholar
  30. 30.
    Norman, L. L., and H. Aranda-Espinoza. Cortical neuron outgrowth is insensitive to substrate stiffness. Cell. Mol. Bioeng. 3:398–414, 2010.CrossRefGoogle Scholar
  31. 31.
    Oakes, P. W., D. C. Patel, N. A. Morin, D. P. Zitterbart, B. Fabry, J. S. Reichner, and J. X. Tang. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114:1387–1395, 2009.CrossRefGoogle Scholar
  32. 32.
    Oliver, J. J., and D. J. Webb. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arter. Thromb. Vasc. Biol. 23:554–566, 2003.CrossRefGoogle Scholar
  33. 33.
    Oppenheimer-Marks, N., L. S. Davis, D. T. Bogue, J. Ramberg, and P. E. Lipsky. Differential utilization of Icam-1 and Vcam-1 during the adhesion and transendothelial migration of human T lymphocytes. J. Immunol. 147:2913–2921, 1991.Google Scholar
  34. 34.
    Park, S., and E. G. Lakatta. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med. J. 53:258–261, 2012.CrossRefGoogle Scholar
  35. 35.
    Peloquin, J., J. Huynh, R. M. Williams, and C. A. Reinhart-King. Indentation measurements of the subendothelial matrix in bovine carotid arteries. J. Biomech. 44:815–821, 2011.CrossRefGoogle Scholar
  36. 36.
    Ramahi, T. M. Cardiovascular disease in the Asia Middle East region: global trends and local implications. Asia-Pacific J. Publ. Health/Asia-Pacific Acad. Consortium Publ. Health 22:83S–89S, 2010.CrossRefGoogle Scholar
  37. 37.
    Ruef, P., T. Bohler, and O. Linderkamp. Deformability and volume of neonatal and adult leukocytes. Pediatr. Res. 29:128–132, 1991.CrossRefGoogle Scholar
  38. 38.
    Salas, A., M. Shimaoka, U. Phan, M. Kim, and T. A. Springer. Transition from rolling to firm adhesion can be mimicked by extension of integrin Alphalbeta2 in an intermediate affinity state. J. Biol. Chem. 281:10876–10882, 2006.CrossRefGoogle Scholar
  39. 39.
    Schnoor, M., and C. A. Parkos. Disassembly of endothelial and epithelial junctions during leukocyte transmigration. Frontiers Biosci. J. Virtual Libr. 13:6638–6652, 2008.CrossRefGoogle Scholar
  40. 40.
    Stemme, S., J. Holm, and G. K. Hansson. T lymphocytes in human atherosclerotic plaques are memory cells expressing Cd45ro and the integrin Vla-1. Arter. Thromb. J. Vasc. Biol./Am. Heart Assoc. 12:206–211, 1992.CrossRefGoogle Scholar
  41. 41.
    Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskelet. 66:328–341, 2009.CrossRefGoogle Scholar
  42. 42.
    Stroka, K. M., and H. Aranda-Espinoza. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118:1632–1640, 2011.CrossRefGoogle Scholar
  43. 43.
    Stroka, K. M., H. N. Hayenga, and H. Aranda-Espinoza. Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans-endothelial migration. PLoS One 8:e61377, 2013.Google Scholar
  44. 44.
    Sumagin, R., H. Prizant, E. Lomakina, R. E. Waugh, and I. H. Sarelius. Lfa-1 and Mac-1 define characteristically different intralumenal crawling and emigration patterns for monocytes and neutrophils in situ. J. Immunol. 185:7057–7066, 2010.CrossRefGoogle Scholar
  45. 45.
    Sumagin, R., and I. H. Sarelius. A role for Icam-1 in maintenance of leukocyte-endothelial cell rolling interactions in inflamed arterioles. Am. J. Physiol. Heart Circ. Physiol. 293:H2786–H2798, 2007.Google Scholar
  46. 46.
    Sutton-Tyrrell, K., S. S. Najjar, R. M. Boudreau, L. Venkitachalam, V. Kupelian, E. M. Simonsick, R. Havlik, E. G. Lakatta, H. Spurgeon, S. Kritchevsky, M. Pahor, D. Bauer, and A. Newman. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 111:3384–3390, 2005.CrossRefGoogle Scholar
  47. 47.
    Voisin, M. B., A. Woodfin, and S. Nourshargh. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arteriosclerosis Thromb. Vasc. Biol. 29:1193–1199, 2009.CrossRefGoogle Scholar
  48. 48.
    Wittchen, E. S. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Frontiers Biosci. J. Virtual Libr. 14:2522–2545, 2009.CrossRefGoogle Scholar
  49. 49.
    Yang, L., R. M. Froio, T. E. Sciuto, A. M. Dvorak, R. Alon, and F. W. Luscinskas. Icam-1 regulates neutrophil adhesion and transcellular migration of Tnf-alpha-activated vascular endothelium under flow. Blood 106:584–592, 2005.CrossRefGoogle Scholar
  50. 50.
    Yang, L., J. R. Kowalski, P. Yacono, M. Bajmoczi, S. K. Shaw, R. M. Froio, D. E. Golan, S. M. Thomas, and F. W. Luscinskas. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J. Immunol. 177:6440–6449, 2006.Google Scholar
  51. 51.
    Yang, J. H., H. Sakamoto, E. C. Xu, and R. T. Lee. Biomechanical regulation of human monocyte/macrophage molecular function. Am. J. Pathol. 156:1797–1804, 2000.CrossRefGoogle Scholar
  52. 52.
    Young, I. T. The classification of white blood cells. IEEE Trans. Bio-med. Eng. 19:291–298, 1972.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  1. 1.Fischell Department of BioengineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations