Cellular and Molecular Bioengineering

, Volume 6, Issue 2, pp 138–147

Substrate Stiffness Regulates PDGF-Induced Circular Dorsal Ruffle Formation Through MLCK

  • John Huynh
  • Francois Bordeleau
  • Casey M. Kraning-Rush
  • Cynthia A. Reinhart-King
Article

Abstract

As atherosclerosis progresses, vascular smooth muscle cells (VSMCs) invade from the medial layer into the intimal layer and proliferate, contributing to atherosclerotic plaque formation. This migration is stimulated in part by platelet-derived growth factor (PDGF), which is released by endothelial cells and inflammatory cells, and vessel stiffening, which occurs with age and atherosclerosis progression. PDGF induces the formation of circular dorsal ruffles (CDRs), actin-based structures associated with increased cell motility. Here we show that mechanical changes in matrix stiffness enhance the formation of CDRs in VSMCs in response to PDGF stimulation. Our data indicate that matrix stiffness increases cellular contractility, and that intracellular pre-stress is necessary for robust CDR formation. When treated with agonists that promote contractility, cells increase CDR formation, whereas agonists that inhibit contractility lead to decreased CDR formation. Substrate stiffness promotes CDR formation in response to PDGF by upregulating Src activity through myosin light chain kinase. Together, these data indicate that vessel stiffening accompanying atherogenesis may exacerbate VSMC response to PDGF leading to CDR formation.

Keywords

Cell migration Traction force Actin Vascular smooth muscle cells Cell contractility 

References

  1. 1.
    Alexander, N. R., K. M. Branch, A. Parekh, E. S. Clark, I. C. Iwueke, S. A. Guelcher, and A. M. Weaver. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18(17):1295–1299, 2008.CrossRefGoogle Scholar
  2. 2.
    Amano, M., M. Nakayama, and K. Kaibuchi. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken) 67(9):545–554, 2010.CrossRefGoogle Scholar
  3. 3.
    Assoian, R. K., and E. A. Klein. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 18(7):347–352, 2008.CrossRefGoogle Scholar
  4. 4.
    Azimifar, S. B., R. T. Bottcher, S. Zanivan, C. Grashoff, M. Kruger, K. R. Legate, M. Mann, and R. Fassler. Induction of membrane circular dorsal ruffles requires co-signalling of integrin-ILK-complex and EGF receptor. J. Cell Sci. 125(Pt 2):435–448, 2012.CrossRefGoogle Scholar
  5. 5.
    Ballestrem, C., B. Wehrle-Haller, and B. A. Imhof. Actin dynamics in living mammalian cells. J. Cell Sci. 111(Pt 12):1649–1658, 1998.Google Scholar
  6. 6.
    Barfod, E. T., A. L. Moore, B. G. Van de Graaf, and S. D. Lidofsky. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling. Mol. Biol. Cell 22(5):634–650, 2011.CrossRefGoogle Scholar
  7. 7.
    Beamish, J. A., P. He, K. Kottke-Marchant, and R. E. Marchant. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng. B 16(5):467–491, 2010.CrossRefGoogle Scholar
  8. 8.
    Bordeleau, F., M.-E. Myrand Lapierre, Y. Sheng, and N. Marceau. Keratin 8/18 regulation of cell stiffness-extracellular matrix interplay through modulation of rho-mediated actin cytoskeleton dynamics. PLoS ONE 7(6):e38780, 2012.CrossRefGoogle Scholar
  9. 9.
    Brown, X. Q., E. Bartolak-Suki, C. Williams, M. L. Walker, V. M. Weaver, and J. Y. Wong. Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: implications for atherosclerosis. J. Cell. Physiol. 225(1):115–122, 2010.CrossRefGoogle Scholar
  10. 10.
    Clark, K., M. Langeslag, C. G. Figdor, and F. N. van Leeuwen. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol. 17(4):178–186, 2007.CrossRefGoogle Scholar
  11. 11.
    Daley, W. P., E. M. Gervais, S. W. Centanni, K. M. Gulfo, D. A. Nelson, and M. Larsen. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity. Development 139(2):411–422, 2012.CrossRefGoogle Scholar
  12. 12.
    Davis-Dusenbery, B. N., C. Wu, and A. Hata. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler. Thromb. Vasc. Biol. 31(11):2370–2377, 2011.CrossRefGoogle Scholar
  13. 13.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.CrossRefGoogle Scholar
  14. 14.
    Evanko, S. P., E. W. Raines, R. Ross, L. I. Gold, and T. N. Wight. Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am. J. Pathol. 152(2):533–546, 1998.Google Scholar
  15. 15.
    Galbraith, C. G., K. M. Yamada, and M. P. Sheetz. The relationship between force and focal complex development. J. Cell Biol. 159(4):695–705, 2002.CrossRefGoogle Scholar
  16. 16.
    Greenwald, S. E. Ageing of the conduit arteries. J. Pathol. 211(2):157–172, 2007.CrossRefGoogle Scholar
  17. 17.
    Gu, Z., E. H. Noss, V. W. Hsu, and M. B. Brenner. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. J. Cell Biol. 193(1):61–70, 2011.CrossRefGoogle Scholar
  18. 18.
    Huang, S., and D. E. Ingber. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176, 2005.CrossRefGoogle Scholar
  19. 19.
    Huang, M., L. Satchell, J. B. Duhadaway, G. C. Prendergast, and L. D. Laury-Kleintop. RhoB links PDGF signaling to cell migration by coordinating activation and localization of Cdc42 and Rac. J. Cell. Biochem. 112(6):1572–1584, 2011.CrossRefGoogle Scholar
  20. 20.
    Huveneers, S., and E. H. Danen. Adhesion signaling—crosstalk between integrins, Src and Rho. J. Cell Sci. 122(Pt 8):1059–1069, 2009.CrossRefGoogle Scholar
  21. 21.
    Huynh, J., N. Nishimura, K. Rana, J. M. Peloquin, J. P. Califano, C. R. Montague, M. R. King, C. B. Schaffer, and C. A. Reinhart-King. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3(112):112ra122, 2011.CrossRefGoogle Scholar
  22. 22.
    Isenberg, B. C., P. A. Dimilla, M. Walker, S. Kim, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophys. J. 97(5):1313–1322, 2009.CrossRefGoogle Scholar
  23. 23.
    King, S. J., D. C. Worth, T. M. Scales, J. Monypenny, G. E. Jones, and M. Parsons. Beta1 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO J. 30(9):1705–1718, 2011.CrossRefGoogle Scholar
  24. 24.
    Krishnan, R., D. D. Klumpers, C. Y. Park, K. Rajendran, X. Trepat, J. van Bezu, V. W. van Hinsbergh, C. V. Carman, J. D. Brain, J. J. Fredberg, J. P. Butler, and G. P. van Nieuw Amerongen. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300(1):C146–C154, 2011.CrossRefGoogle Scholar
  25. 25.
    Krueger, E. W., J. D. Orth, H. Cao, and M. A. McNiven. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14(3):1085–1096, 2003.CrossRefGoogle Scholar
  26. 26.
    Kumar, S., and V. M. Weaver. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28(1–2):113–127, 2009.CrossRefGoogle Scholar
  27. 27.
    Linder, S., C. Wiesner, and M. Himmel. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27:185–211, 2011.CrossRefGoogle Scholar
  28. 28.
    Lusis, A. J. Atherosclerosis. Nature 407(6801):233–241, 2000.CrossRefGoogle Scholar
  29. 29.
    Matsumoto, T., H. Abe, T. Ohashi, Y. Kato, and M. Sato. Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol. Meas. 23(4):635–648, 2002.CrossRefGoogle Scholar
  30. 30.
    Mattace-Raso, F. U., T. J. van der Cammen, A. Hofman, N. M. van Popele, M. L. Bos, M. A. Schalekamp, R. Asmar, R. S. Reneman, A. P. Hoeks, M. M. Breteler, and J. C. Witteman. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113(5):657–663, 2006.CrossRefGoogle Scholar
  31. 31.
    McDaniel, D. P., G. A. Shaw, J. T. Elliott, K. Bhadriraju, C. Meuse, K. H. Chung, and A. L. Plant. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys. J. 92(5):1759–1769, 2007.CrossRefGoogle Scholar
  32. 32.
    Murphy, D. A., and S. A. Courtneidge. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12(7):413–426, 2011.CrossRefGoogle Scholar
  33. 33.
    Na, S., O. Collin, F. Chowdhury, B. Tay, M. Ouyang, Y. Wang, and N. Wang. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. U.S.A. 105(18):6626–6631, 2008.CrossRefGoogle Scholar
  34. 34.
    Owens, G. K., M. S. Kumar, and B. R. Wamhoff. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84(3):767–801, 2004.CrossRefGoogle Scholar
  35. 35.
    Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.CrossRefGoogle Scholar
  36. 36.
    Peloquin, J., J. Huynh, R. M. Williams, and C. A. Reinhart-King. Indentation measurements of the subendothelial matrix in bovine carotid arteries. J. Biomech. 44(5):815–821, 2011.CrossRefGoogle Scholar
  37. 37.
    Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1):198–209, 2005.CrossRefGoogle Scholar
  38. 38.
    Poch, G., and S. N. Pancheva. Calculating slope and ED50 of additive dose-response curves, and application of these tabulated parameter values. J. Pharmacol. Toxicol. Methods 33(3):137–145, 1995.CrossRefGoogle Scholar
  39. 39.
    Poincloux, R., F. Lizarraga, and P. Chavrier. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J. Cell Sci. 122(Pt 17):3015–3024, 2009.CrossRefGoogle Scholar
  40. 40.
    Raines, E. W. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 15(4):237–254, 2004.CrossRefGoogle Scholar
  41. 41.
    Raines, E. W., H. Koyama, and N. O. Carragher. The extracellular matrix dynamically regulates smooth muscle cell responsiveness to PDGF. Ann. N. Y. Acad. Sci. 902:39–51, 2000; discussion 51–32.CrossRefGoogle Scholar
  42. 42.
    Ridley, A. J. Life at the leading edge. Cell 145(7):1012–1022, 2011.CrossRefGoogle Scholar
  43. 43.
    Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340(2):115–126, 1999.CrossRefGoogle Scholar
  44. 44.
    Ross, R., J. Masuda, E. W. Raines, A. M. Gown, S. Katsuda, M. Sasahara, L. T. Malden, H. Masuko, and H. Sato. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 248(4958):1009–1012, 1990.CrossRefGoogle Scholar
  45. 45.
    Sero, J. E., C. K. Thodeti, A. Mammoto, C. Bakal, S. Thomas, and D. E. Ingber. Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning. PLoS ONE 6(12):e28303, 2011.CrossRefGoogle Scholar
  46. 46.
    Stroka, K. M., and H. Aranda-Espinoza. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118(6):1632–1640, 2011.CrossRefGoogle Scholar
  47. 47.
    Sun, C., M. H. Wu, and S. Y. Yuan. Nonmuscle myosin light-chain kinase deficiency attenuates atherosclerosis in apolipoprotein E-deficient mice via reduced endothelial barrier dysfunction and monocyte migration. Circulation 124(1):48–57, 2011.CrossRefGoogle Scholar
  48. 48.
    Sutton-Tyrrell, K., S. S. Najjar, R. M. Boudreau, L. Venkitachalam, V. Kupelian, E. M. Simonsick, R. Havlik, E. G. Lakatta, H. Spurgeon, S. Kritchevsky, M. Pahor, D. Bauer, and A. Newman. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 111(25):3384–3390, 2005.CrossRefGoogle Scholar
  49. 49.
    Totsukawa, G., Y. Yamakita, S. Yamashiro, D. J. Hartshorne, Y. Sasaki, and F. Matsumura. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150(4):797–806, 2000.CrossRefGoogle Scholar
  50. 50.
    Wang, Y., E. L. Botvinick, Y. Zhao, M. W. Berns, S. Usami, R. Y. Tsien, and S. Chien. Visualizing the mechanical activation of Src. Nature 434(7036):1040–1045, 2005.CrossRefGoogle Scholar
  51. 51.
    Wang, Y., X. R. Zheng, N. Riddick, M. Bryden, W. Baur, X. Zhang, and H. K. Surks. ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ. Res. 104(4):531–540, 2009.CrossRefGoogle Scholar
  52. 52.
    Webb, D. J., K. Donais, L. A. Whitmore, S. M. Thomas, C. E. Turner, J. T. Parsons, and A. F. Horwitz. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 6(2):154–161, 2004.CrossRefGoogle Scholar
  53. 53.
    Wei, W. C., H. H. Lin, M. R. Shen, and M. J. Tang. Mechanosensing machinery for cells under low substratum rigidity. Am. J. Physiol. Cell Physiol. 295(6):C1579–C1589, 2008.CrossRefGoogle Scholar
  54. 54.
    Wolf, K., and P. Friedl. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21(12):736–744, 2011.CrossRefGoogle Scholar
  55. 55.
    Zeng, Y., T. Lai, C. G. Koh, P. R. LeDuc, and K. H. Chiam. Investigating circular dorsal ruffles through varying substrate stiffness and mathematical modeling. Biophys. J. 101(9):2122–2130, 2011.CrossRefGoogle Scholar
  56. 56.
    Zieman, S. J., V. Melenovsky, L. Clattenburg, M. C. Corretti, A. Capriotti, G. Gerstenblith, and D. A. Kass. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J. Hypertens. 25(3):577–583, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • John Huynh
    • 1
  • Francois Bordeleau
    • 1
  • Casey M. Kraning-Rush
    • 1
  • Cynthia A. Reinhart-King
    • 1
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA

Personalised recommendations