Skip to main content
Log in

Cytoplasmic Dynein: Tension Generation on Microtubules and the Nucleus

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Cytoplasmic dynein is a microtubule dependent motor protein that is central to vesicle transport, cell division and organelle positioning. Recent studies suggest that dynein can generate significant pulling forces on intracellular structures as it motors along microtubules. In this review, we discuss how dynein-generated pulling forces position the nucleus and the centrosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Brangwynne, C. P., F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. A. Weitz. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol. 173:733–741, 2006.

    Article  Google Scholar 

  2. Burakov, A., E. Nadezhdina, B. Slepchenko, and V. Rodionov. Centrosome positioning in interphase cells. J. Cell Biol. 162:963–969, 2003.

    Article  Google Scholar 

  3. Burgess, S. A., M. L. Walker, H. Sakakibara, P. J. Knight, and K. Oiwa. Dynein structure and power stroke. Nature 421:715–718, 2003.

    Article  Google Scholar 

  4. Caviston, J. P., and E. L. Holzbaur. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol. 16:530–537, 2006.

    Article  Google Scholar 

  5. Chikashige, Y., C. Tsutsumi, M. Yamane, K. Okamasa, T. Haraguchi, and Y. Hiraoka. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69, 2006.

    Article  Google Scholar 

  6. Cole, N. B., and J. Lippincott-Schwartz. Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol. 7:55–64, 1995.

    Article  Google Scholar 

  7. Dodding, M. P., and M. Way. Coupling viruses to dynein and kinesin-1. EMBO J. 30:3527–3539, 2011.

    Article  Google Scholar 

  8. Dujardin, D. L., L. E. Barnhart, S. A. Stehman, E. R. Gomes, G. G. Gundersen, and R. B. Vallee. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163:1205–1211, 2003.

    Article  Google Scholar 

  9. Eschbach, J., and L. Dupuis. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 130:348–363, 2011.

    Article  Google Scholar 

  10. Fischer, J. A., S. Acosta, A. Kenny, C. Cater, C. Robinson, and J. Hook. Drosophila klarsicht has distinct subcellular localization domains for nuclear envelope and microtubule localization in the eye. Genetics 168:1385–1393, 2004.

    Article  Google Scholar 

  11. Fridolfsson, H. N., N. Ly, M. Meyerzon, and D. A. Starr. UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Dev. Biol. 338:237–250, 2010.

    Article  Google Scholar 

  12. Fridolfsson, H. N., and D. A. Starr. Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J. Cell Biol. 191:115–128, 2010.

    Article  Google Scholar 

  13. Gee, M. A., J. E. Heuser, and R. B. Vallee. An extended microtubule-binding structure within the dynein motor domain. Nature 390:636–639, 1997.

    Article  Google Scholar 

  14. Gennerich, A., A. P. Carter, S. L. Reck-Peterson, and R. D. Vale. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965, 2007.

    Article  Google Scholar 

  15. Gibbons, B. H., and I. R. Gibbons. Vanadate-sensitized cleavage of dynein heavy chains by 365-nm irradiation of demembranated sperm flagella and its effect on the flagellar motility. J. Biol. Chem. 262:8354–8359, 1987.

    Google Scholar 

  16. Gibbons, I. R., B. H. Gibbons, G. Mocz, and D. J. Asai. Multiple nucleotide-binding sites in the sequence of dynein beta heavy chain. Nature 352:640–643, 1991.

    Article  Google Scholar 

  17. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–934, 1993.

    Article  Google Scholar 

  18. Grill, S. W., and A. A. Hyman. Spindle positioning by cortical pulling forces. Dev. Cell 8:461–465, 2005.

    Article  Google Scholar 

  19. Harada, A., Y. Takei, Y. Kanai, Y. Tanaka, S. Nonaka, and N. Hirokawa. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141:51–59, 1998.

    Article  Google Scholar 

  20. Harrell, J. M., P. J. Murphy, Y. Morishima, H. Chen, J. F. Mansfield, M. D. Galigniana, and W. B. Pratt. Evidence for glucocorticoid receptor transport on microtubules by dynein. J. Biol. Chem. 279:54647–54654, 2004.

    Article  Google Scholar 

  21. Holy, T. E., M. Dogterom, B. Yurke, and S. Leibler. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl Acad. Sci. USA. 94:6228–6231, 1997.

    Article  Google Scholar 

  22. Howard, J. Elastic and damping forces generated by confined arrays of dynamic microtubules. Phys. Biol. 3:54–66, 2006.

    Article  Google Scholar 

  23. Inoue, S., and E. D. Salmon. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–1640, 1995.

    Google Scholar 

  24. Johnston, J. A., M. E. Illing, and R. R. Kopito. Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53:26–38, 2002.

    Article  Google Scholar 

  25. Kardon, J. R., S. L. Reck-Peterson, and R. D. Vale. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl Acad. Sci. USA. 106:5669–5674, 2009.

    Article  Google Scholar 

  26. Kardon, J. R., and R. D. Vale. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10:854–865, 2009.

    Article  Google Scholar 

  27. Karki, S., and E. L. Holzbaur. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11:45–53, 1999.

    Article  Google Scholar 

  28. King, S. M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113(Pt 14):2521–2526, 2000.

    Google Scholar 

  29. King, S. J., and T. A. Schroer. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2:20–24, 2000.

    Article  Google Scholar 

  30. Kon, T., M. Nishiura, R. Ohkura, Y. Y. Toyoshima, and K. Sutoh. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–11274, 2004.

    Article  Google Scholar 

  31. Koonce, M. P., and I. Tikhonenko. Functional elements within the dynein microtubule-binding domain. Mol. Biol. Cell 11:523–529, 2000.

    Google Scholar 

  32. Kracklauer, M. P., S. M. Banks, X. Xie, Y. Wu, and J. A. Fischer. Drosophila klaroid encodes a SUN domain protein required for Klarsicht localization to the nuclear envelope and nuclear migration in the eye. Fly (Austin). 1:75–85, 2007.

    Google Scholar 

  33. Kural, C., H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R. Selvin. Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472, 2005.

    Article  Google Scholar 

  34. Laan, L., N. Pavin, J. Husson, G. Romet-Lemonne, M. van Duijn, M. P. Lopez, R. D. Vale, F. Julicher, S. L. Reck-Peterson, and M. Dogterom. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–514, 2012.

    Article  Google Scholar 

  35. Ling, S. C., P. S. Fahrner, W. T. Greenough, and V. I. Gelfand. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl Acad. Sci. USA. 101:17428–17433, 2004.

    Article  Google Scholar 

  36. MacAskill, A. F., and J. T. Kittler. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20:102–112, 2010.

    Article  Google Scholar 

  37. Mallik, R., B. C. Carter, S. A. Lex, S. J. King, and S. P. Gross. Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–652, 2004.

    Article  Google Scholar 

  38. Malone, C. J., L. Misner, N. Le Bot, M. C. Tsai, J. M. Campbell, J. Ahringer, and J. G. White. The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell 115:825–836, 2003.

    Article  Google Scholar 

  39. McKenney, R. J., M. Vershinin, A. Kunwar, R. B. Vallee, and S. P. Gross. LIS1 and NudE induce a persistent dynein force-producing state. Cell 141:304–314, 2010.

    Article  Google Scholar 

  40. Miki, F., A. Kurabayashi, Y. Tange, K. Okazaki, M. Shimanuki, and O. Niwa. Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast. Mol. Genet. Genomics 270:449–461, 2004.

    Article  Google Scholar 

  41. Mosley-Bishop, K. L., Q. Li, L. Patterson, and J. A. Fischer. Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr. Biol. 9:1211–1220, 1999.

    Article  Google Scholar 

  42. Ogawa, K. Four ATP-binding sites in the midregion of the beta heavy chain of dynein. Nature 352:643–645, 1991.

    Article  Google Scholar 

  43. Palazzo, A. F., H. L. Joseph, Y. J. Chen, D. L. Dujardin, A. S. Alberts, K. K. Pfister, R. B. Vallee, and G. G. Gundersen. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr. Biol. 11:1536–1541, 2001.

    Article  Google Scholar 

  44. Patterson, K., A. B. Molofsky, C. Robinson, S. Acosta, C. Cater, and J. A. Fischer. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell 15:600–610, 2004.

    Article  Google Scholar 

  45. Reck-Peterson, S. L., A. Yildiz, A. P. Carter, A. Gennerich, N. Zhang, and R. D. Vale. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348, 2006.

    Article  Google Scholar 

  46. Salmon, W. C., M. C. Adams, and C. M. Waterman-Storer. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J. Cell Biol. 158:31–37, 2002.

    Article  Google Scholar 

  47. Schroer, T. A., E. R. Steuer, and M. P. Sheetz. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56:937–946, 1989.

    Article  Google Scholar 

  48. Splinter, D., M. E. Tanenbaum, A. Lindqvist, D. Jaarsma, A. Flotho, K. L. Yu, I. Grigoriev, D. Engelsma, E. D. Haasdijk, N. Keijzer, J. Demmers, M. Fornerod, F. Melchior, C. C. Hoogenraad, R. H. Medema, and A. Akhmanova. Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol. 8:e1000350, 2010.

    Article  Google Scholar 

  49. Toba, S., T. M. Watanabe, L. Yamaguchi-Okimoto, Y. Y. Toyoshima, and H. Higuchi. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl Acad. Sci. USA. 103:5741–5745, 2006.

    Article  Google Scholar 

  50. Tran, P. T., L. Marsh, V. Doye, S. Inoue, and F. Chang. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153:397–411, 2001.

    Article  Google Scholar 

  51. Vallee, R. B., J. C. Williams, D. Varma, and L. E. Barnhart. Dynein: an ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58:189–200, 2004.

    Article  Google Scholar 

  52. Vogel, S. K., N. Pavin, N. Maghelli, F. Julicher, and I. M. Tolic-Norrelykke. Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 7:e1000087, 2009.

    Article  Google Scholar 

  53. Waterman-Storer, C. M., and E. D. Salmon. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J. Cell Biol. 139:417–434, 1997.

    Article  Google Scholar 

  54. Welte, M. A., S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557, 1998.

    Article  Google Scholar 

  55. Wilson, M. H., and E. L. Holzbaur. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells. J. Cell Sci. 125:4158–4169, 2012.

    Google Scholar 

  56. Wu, J., R. B. Dickinson, and T. P. Lele. Investigation of in vivo microtubule and stress fiber mechanics with laser ablation. Integr. Biol. (Camb). 4:471–479, 2012.

    Article  Google Scholar 

  57. Wu, J., K. C. Lee, R. B. Dickinson, and T. P. Lele. How dynein and microtubules rotate the nucleus. J. Cell. Physiol. 226:2666–2674, 2011.

    Article  Google Scholar 

  58. Wu, J., G. Misra, R. J. Russell, A. J. Ladd, T. P. Lele, and R. B. Dickinson. Effects of dynein on microtubule mechanics and centrosome positioning. Mol. Biol. Cell 22:4834–4841, 2011.

    Article  Google Scholar 

  59. Wuhr, M., S. Dumont, A. C. Groen, D. J. Needleman, and T. J. Mitchison. How does a millimeter-sized cell find its center? Cell Cycle 8:1115–1121, 2009.

    Article  Google Scholar 

  60. Wynshaw-Boris, A., and M. J. Gambello. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15:639–651, 2001.

    Article  Google Scholar 

  61. Yu, J., K. Lei, M. Zhou, C. M. Craft, G. Xu, T. Xu, Y. Zhuang, R. Xu, and M. Han. KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum. Mol. Genet. 20:1061–1073, 2011.

    Article  Google Scholar 

  62. Zhang, X., K. Lei, X. Yuan, X. Wu, Y. Zhuang, T. Xu, R. Xu, and M. Han. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187, 2009.

    Article  Google Scholar 

  63. Zhu, J., A. Burakov, V. Rodionov, and A. Mogilner. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study. Mol. Biol. Cell 21:4418–4427, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under awards CMMI 0954302 (T.P.L.), CBET 1236616 (R.B.D. and T.P.L.) and National Institute of Health 1 R01GM102486 (T.P.L.). [Fig. 4]—Reproduced by permission of The Royal Society of Chemistry. http://pubs.rsc.org/en/content/articlelanding/2012/ib/c2ib20015e

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay P. Lele.

Additional information

Associate Editor Jung-Chi Liao & Henry Hess oversaw the review of this article.

Nandini Shekhar and Jun Wu contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekhar, N., Wu, J., Dickinson, R.B. et al. Cytoplasmic Dynein: Tension Generation on Microtubules and the Nucleus. Cel. Mol. Bioeng. 6, 74–81 (2013). https://doi.org/10.1007/s12195-012-0257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0257-4

Keywords

Navigation