Skip to main content

Advertisement

Log in

In Vitro Assessment of Choline Dihydrogen Phosphate (CDHP) as a Vehicle for Recombinant Human Interleukin-2 (rhIL-2)

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Choline dihydrogen phosphate (CDHP) is a low melting point organic salt reported to increase the thermal stability of model proteins. The purpose of the current work was to investigate the effect of CDHP on recombinant human interleukin-2 (rhIL-2) functional and structural integrity, a therapeutic protein used for treating advanced melanoma. Structural integrity and biological activity of rhIL-2 formulated in CDHP was measured below and above thermal midpoint unfolding temperature (T m) of the protein. Potential biocompatibility was assessed by exposing splenocytes and the B16F10 cell line to CDHP at various concentrations and conditions of pH. Formulation of rhIL-2 in an aqueous 680 mM CDHP pH 7.4 solution preserved rhIL-2 binding activity when the solution was heated to 23.3 °C above T m. CDHP solutions (≤80 mM), formulated with 0.33% (w/v) NaHCO3 to maintain pH ≥ 7.2, exhibited no cytotoxic activity toward primary splenocytes or B16F10 cells cultures. However, a 10-fold loss in biological activity was observed when rhIL-2 was used in a 30 mM CDHP aqueous solution with NaHCO3 (pH ≥ 7.2) compared to controls without CDHP. Choline DHP increases rhIL-2 thermal stability in the absence of inherent CDHP cytotoxicity. While increased T m is associated with a diminished rhIL-2 biological activity, the protein retains binding ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arakawa, T., R. Bhat, and S. N. Timasheff. Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system. Biochemistry 29(7):1914–1923, 1990.

    Article  Google Scholar 

  2. Arakawa, T., J. S. Philo, and Y. Kita. Kinetic and thermodynamic analysis of thermal unfolding of recombinant erythropoietin. Biosci. Biotechnol. Biochem. 65(6):1321–1327, 2001.

    Article  Google Scholar 

  3. Byrne, N., L. M. Wang, J. P. Belieres, and C. A. Angell. Reversible folding-unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chem. Commun. (Camb.) (26):2714–2716, 2007.

  4. Constatinescu, D., C. Herrmann, and H. Weingartner. Patterns of protein unfolding and protein aggregation in ionic liquids. Phys. Chem. Chem. Phys. 12(8):1756–1763, 2010.

    Article  Google Scholar 

  5. Cooper, A., C. M. Johnson, J. H. Lakey, and M. Nollmann. Heat does not come in different colours: entropy–enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys. Chem. 93(2–3):215–230, 2001.

    Article  Google Scholar 

  6. Den Otter, W., J. J. Jacobs, J. J. Battermann, G. J. Hordijk, Z. Krastev, E. V. Moiseeva, R. J. Stewart, P. G. Ziekman, and J. W. Koten. Local therapy of cancer with free IL-2. Cancer Immunol. Immunother. 57(7):931–950, 2008.

    Article  Google Scholar 

  7. Foureau, D. M., I. H. McKillop, C. P. Jones, A. Amin, R. L. White, and J. C. Salo. Skin tumor responsiveness to interleukin-2 treatment and CD8 Foxp3+T cell expansion in an immunocompetent mouse model. Cancer Immunol. Immunother. 60(9):1347–1356, 2011.

    Article  Google Scholar 

  8. Fujita, K., M. Forsyth, D. R. MacFarlane, R. W. Reid, and G. D. Elliott. Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol. Bioeng. 94(6):1209–1213, 2006.

    Article  Google Scholar 

  9. Fujita, K., D. R. MacFarlane, and M. Forsyth. Protein solubilising and stabilising ionic liquids. Chem. Commun. (Camb.) (38):4804–4806, 2005.

  10. Fujita, K., D. R. MacFarlane, M. Forsyth, M. Yoshizawa-Fujita, K. Murata, N. Nakamura, and H. Ohno. Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. Biomacromolecules 8(7):2080–2086, 2007.

    Article  Google Scholar 

  11. Geigert, J., N. Solli, P. Woehleke, and S. Vemuri. Development and shelf-life determination of recombinant interleukin-2 (proleukin). Pharm. Biotechnol. 5:249–262, 1993.

    Google Scholar 

  12. Gillis, S., and K. A. Smith. Long term culture of tumour-specific cytotoxic T cells. Nature 268(5616):154–156, 1977.

    Article  Google Scholar 

  13. Hashimoto, T., Z. He, W. Y. Ma, P. C. Schmid, A. M. Bode, C. S. Yang, and Z. Dong. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res. 64(9):3344–3349, 2004.

    Article  Google Scholar 

  14. Hicks, R. W., and S. C. Becker. An overview of intravenous-related medication administration errors as reported to MEDMARX, a national medication error-reporting program. J. Infus. Nurs. 29(1):20–27, 2006.

    Article  Google Scholar 

  15. Hofmeister, F. About the science of the effect of salts. Arch. Exp. Pathol. Pharmacol. 24:247–260, 1888.

    Article  Google Scholar 

  16. Kaushik, J. K., and R. Bhat. A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions. Protein Sci. 8(1):222–233, 1999.

    Article  Google Scholar 

  17. Komsa-Penkova, R., R. Koynova, G. Kostov, and B. G. Tenchov. Thermal stability of calf skin collagen type I in salt solutions. Biochim. Biophys. Acta 1297(2):171–181, 1996.

    Article  Google Scholar 

  18. Kuwahara, T., S. Asanami, and S. Kubo. Experimental infusion phlebitis: tolerance osmolality of peripheral venous endothelial cells. Nutrition 14(6):496–501, 1998.

    Article  Google Scholar 

  19. Ma, A., R. Koka, and P. Burkett. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu. Rev. Immunol. 24:657–679, 2006.

    Article  Google Scholar 

  20. Macfarlane, D. R., R. Vijayaraghavan, H. N. Ha, A. Izgorodin, K. D. Weaver, and G. D. Elliott. Ionic liquid “buffers”-pH control in ionic liquid systems. Chem. Commun. (Camb.) 46(41):7703–7705, 2010.

    Article  Google Scholar 

  21. Maclean, D. S., Q. Qian, and C. R. Middaugh. Stabilization of proteins by low molecular weight multi-ions. J. Pharm. Sci. 91(10):2220–2229, 2002.

    Article  Google Scholar 

  22. Malek, T. R., and I. Castro. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33(2):153–165, 2010.

    Article  Google Scholar 

  23. Mealey, R. H., M. H. Littke, S. R. Leib, W. C. Davis, and T. C. McGuire. Failure of low-dose recombinant human IL-2 to support the survival of virus-specific CTL clones infused into severe combined immunodeficient foals: lack of correlation between in vitro activity and in vivo efficacy. Vet. Immunol. Immunopathol. 121(1–2):8–22, 2008.

    Article  Google Scholar 

  24. Miki, Y., K. Kakuyama, and K. Soda. Protein stability; optimization of electrostatic contributions by partially neutralizing surface ionic charges. Biosystems 44(1):69–77, 1997.

    Article  Google Scholar 

  25. Minami, Y., T. Kono, T. Miyazaki, and T. Taniguchi. The IL-2 receptor complex: its structure, function, and target genes. Annu. Rev. Immunol. 11:245–268, 1993.

    Article  Google Scholar 

  26. Miquel, K., A. Pradines, F. Terce, S. Selmi, and G. Favre. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J. Biol. Chem. 273(40):26179–26186, 1998.

    Article  Google Scholar 

  27. Nony, P., P. Girard, S. Chabaud, L. Hessel, C. Thebault, and J. P. Boissel. Impact of osmolality on burning sensations during and immediately after intramuscular injection of 0.5 ml of vaccine suspensions in healthy adults. Vaccine 19(27):3645–3651, 2001.

    Article  Google Scholar 

  28. Olteanu, A., C. N. Patel, M. M. Dedmon, S. Kennedy, M. W. Linhoff, C. M. Minder, P. R. Potts, M. Deshmukh, and G. J. Pielak. Stability and apoptotic activity of recombinant human cytochrome c. Biochem. Biophys. Res. Commun. 312(3):733–740, 2003.

    Article  Google Scholar 

  29. Proctor, V. A., and F. E. Cunningham. The chemistry of lysozyme and its use as a food preservative and a pharmaceutical. Crit. Rev. Food Sci. Nutr. 26(4):359–395, 1988.

    Article  Google Scholar 

  30. Ru, M. T., J. S. Dordick, J. A. Reimer, and D. S. Clark. Optimizing the salt-induced activation of enzymes in organic solvents: effects of lyophilization time and water content. Biotechnol. Bioeng. 63(2):233–241, 1999.

    Article  Google Scholar 

  31. Shaker, M. A., and H. M. Younes. Interleukin-2: evaluation of routes of administration and current delivery systems in cancer therapy. J. Pharm. Sci. 98(7):2268–2298, 2009.

    Article  Google Scholar 

  32. Sparano, J. A., R. I. Fisher, M. Sunderland, K. Margolin, M. L. Ernest, M. Sznol, M. B. Atkins, J. P. Dutcher, K. C. Micetich, G. R. Weiss, et al. Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J. Clin. Oncol. 11(10):1969–1977, 1993.

    Google Scholar 

  33. Tadeo, X., B. Lopez-Mendez, D. Castano, T. Trigueros, and O. Millet. Protein stabilization and the Hofmeister effect: the role of hydrophobic solvation. Biophys. J. 97(9):2595–2603, 2009.

    Article  Google Scholar 

  34. Tadeo, X., M. Pons, and O. Millet. Influence of the Hofmeister anions on protein stability as studied by thermal denaturation and chemical shift perturbation. Biochemistry 46(3):917–923, 2007.

    Article  Google Scholar 

  35. Takeda, K., S. Akagi, S. Takahashi, A. Onishi, H. Hanada, and C. A. Pinkert. Mitochondrial activity in response to serum starvation in bovine (Bos taurus) cell culture. Cloning Stem Cells 4(3):223–229, 2002.

    Article  Google Scholar 

  36. Viguier, M., F. Lemaitre, O. Verola, M. S. Cho, G. Gorochov, L. Dubertret, H. Bachelez, P. Kourilsky, and L. Ferradini. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. 173(2):1444–1453, 2004.

    Google Scholar 

  37. Vijayaraghavan, R., A. Izgorodin, V. Ganesh, M. Surianarayanan, and D. R. MacFarlane. Long-term structural and chemical stability of DNA in hydrated ionic liquids. Angew. Chem. Int. Ed. Engl. 49(9):1631–1633, 2010.

    Article  Google Scholar 

  38. Vogt, G., S. Woell, and P. Argos. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 269(4):631–643, 1997.

    Article  Google Scholar 

  39. Vonhippel, P. H., and K. Y. Wong. Neutral salts: the generality of their effects on the stability of macromolecular conformations. Science 145(3632):577–580, 1964.

    Article  Google Scholar 

  40. Vrikkis, R. M., K. J. Fraser, K. Fujita, D. R. Macfarlane, and G. D. Elliott. Biocompatible ionic liquids: a new approach for stabilizing proteins in liquid formulation. J. Biomech. Eng. 131(7):074514, 2009.

    Article  Google Scholar 

  41. Waldmann, T. A., S. Dubois, and Y. Tagaya. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14(2):105–110, 2001.

    Google Scholar 

  42. Weaver, K. D., H. J. Kim, J. Sun, D. R. MacFarlane, and G. D. Elliott. Cytotoxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chem. 12:507–513, 2010.

    Article  Google Scholar 

  43. Weaver, K. D., R. M. Vrikkis, M. P. Van Vorst, J. Trullinger, R. Vijayaraghavan, D. M. Foureau, I. H. McKillop, D. R. Macfarlane, J. K. Krueger, and G. D. Elliott. Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Phys. Chem. Chem. Phys. 14(2):790–801, 2011.

    Article  Google Scholar 

  44. West, W. H., K. W. Tauer, J. R. Yannelli, G. D. Marshall, D. W. Orr, G. B. Thurman, and R. K. Oldham. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N. Engl. J. Med. 316(15):898–905, 1987.

    Article  Google Scholar 

  45. Yamasaki, M., H. Yano, and K. Aoki. Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength. Int. J. Biol. Macromol. 12(4):263–268, 1990.

    Article  Google Scholar 

  46. Yamasaki, M., H. Yano, and K. Aoki. Differential scanning calorimetric studies on bovine serum albumin: II. Effects of neutral salts and urea. Int. J. Biol. Macromol. 13(6):322–328, 1991.

    Article  Google Scholar 

  47. Zhang, Y., and P. S. Cremer. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10(6):658–663, 2006.

    Article  Google Scholar 

  48. Zhao, H., O. Olubajo, Z. Song, A. L. Sims, T. E. Person, R. A. Lawal, and L. A. Holley. Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorg. Chem. 34(1):15–25, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grant 1R21EB00740401A2 to GDE and DRM, and by an UNCC-CMC partnership grant to GDE and DMF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria D. Elliott.

Additional information

Associate Editor Joseph Le Doux oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foureau, D.M., Vrikkis, R.M., Jones, C.P. et al. In Vitro Assessment of Choline Dihydrogen Phosphate (CDHP) as a Vehicle for Recombinant Human Interleukin-2 (rhIL-2). Cel. Mol. Bioeng. 5, 390–401 (2012). https://doi.org/10.1007/s12195-012-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0243-x

Keywords

Navigation