Skip to main content
Log in

Landing Rate Measurements to Detect Fibrinogen Adsorption to Non-fouling Surfaces

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Rapid advances in non-fouling surface technology have pushed the performance of novel coatings toward the detection limit of established protein density quantification techniques. Hence, there is an urgent need for more sensitive detection strategies. Previously we demonstrated that landing rate measurements of microtubules can reveal kinesin surface coverages between 0.1 and 10 μm−2. In this report, we quantify the binding kinetics of highly fluorescent markers to surface-adhered proteins and demonstrate the of protein surface densities in the range of 0.1–1000 μm−2. We utilize this technique to measure kinesin densities on casein-coated glass surfaces and fibrinogen densities on non-fouling polyethylene glycol methacrylate (PEGMA) surfaces. The use of nanospheres (i) potentially permits the detection of a variety of adsorbed proteins, (ii) facilitates the determination of the landing rate due to their uniformity, and (iii) extends the dynamic range of the method due to their small size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Adamczyk, Z., J. Barbasz, and M. Ciesla. Kinetics of fibrinogen adsorption on hydrophilic substrates. Langmuir 27:6868–6878, 2011.

    Google Scholar 

  2. Adamczyk, Z., P. Belouschek, and D. Lorenz. Electrostatic interactions of bodies bearing thin double-layers, I. General formulation. Ber. Bunsenges. Phys. Chem. 94:1483–1492, 1990.

    Google Scholar 

  3. Agarwal, A., and H. Hess. Biomolecular motors at the intersection of nanotechnology and polymer science. Prog. Polym. Sci. 35:252–277, 2010.

    Article  Google Scholar 

  4. Agarwal, A., P. Katira, and H. Hess. Millisecond curing time of a molecular adhesive causes velocity-dependent cargo-loading of molecular shuttles. Nano. Lett. 9:1170–1175, 2009.

    Article  Google Scholar 

  5. Black, J. Biological Performance of Materials (4th ed.). Boca Raton: Taylor & Francis, 2006.

    Google Scholar 

  6. Cao, L., M. Chang, C.-Y. Lee, D. G. Castner, S. Sukavaneshvar, B. D. Ratner, and T. A. Horbett. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. J. Biomed. Mater. Res. A 81A:827–837, 2007.

    Article  Google Scholar 

  7. Chan, B. M. C., and J. L. Brash. Adsorption of fibrinogen on glass: reversibility aspects. J. Colloid. Interf. Sci. 82:217–225, 1981.

    Article  Google Scholar 

  8. Chen, H. Y., and J. Lahann. Fabrication of discontinuous surface patterns within microfluidic channels using photodefinable vapor-based polymer coatings. Anal. Chem. 77:6909–6914, 2005.

    Article  Google Scholar 

  9. Coy, D. L., M. Wagenbach, and J. Howard. Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J. Biol. Chem. 274:3667–3671, 1999.

    Article  Google Scholar 

  10. Estephan, Z. G., J. B. Schlenoff, and P. S. Schlenoff. Zwitteration as an alternative to PEGylation. Langmuir 27:6794–6800, 2011.

    Google Scholar 

  11. Fischer, T., A. Agarwal, and H. Hess. A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4:162–166, 2009.

    Article  Google Scholar 

  12. Gombotz, W. R., W. Guanghui, T. A. Horbett, and A. S. Hoffman. Protein adsorption to poly(ethylene oxide) surfaces. J. Biomed. Mater. Res. 25:1547–1562, 1991.

    Article  Google Scholar 

  13. Gon, S., M. Bendersky, J. L. Ross, and M. M. Santore. Manipulating protein adsorption using a patchy protein-resistant brush. Langmuir 26:12147–12154, 2010.

    Article  Google Scholar 

  14. Hansson, K. M., S. Tosatti, J. Isaksson, J. Wettero, M. Textor, T. L. Lindahl, and P. Tengvall. Whole blood coagulation on protein adsorption-resistant PEG and peptide functionalised PEG-coated titanium surfaces. Biomaterials 26:861–872, 2005.

    Article  Google Scholar 

  15. Hoa, X. D., A. G. Kirk, and M. Tabrizian. Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23:151–160, 2007.

    Article  Google Scholar 

  16. Howard, J., A. J. Hudspeth, and R. D. Vale. Movement of microtubules by single kinesin molecules. Nature 342:154–158, 1989.

    Article  Google Scholar 

  17. Hucknall, A., D.-H. Kim, S. Rangarajan, R. T. Hill, W. M. Reichert, and A. Chilkoti. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 21:1968–1971, 2009.

    Article  Google Scholar 

  18. Hucknall, A., S. Rangarajan, and A. Chilkoti. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 21:2441–2446, 2009.

    Article  Google Scholar 

  19. Ionov, L., A. Synytska, E. Kaul, and S. Diez. Protein-resistant polymer coatings based on surface-adsorbed poly (aminoethyl methacrylate)/poly (ethylene glycol) copolymers. Biomacromolecules 11:233–237, 2010.

    Article  Google Scholar 

  20. Jeune-Smith, Y., and H. Hess. Engineering the length distribution of microtubules polymerized in vitro. Soft Matter 6:1778–1784, 2010.

    Article  Google Scholar 

  21. Jiang, S. Y., and Z. Q. Cao. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22:920–932, 2010.

    Article  Google Scholar 

  22. Katira, P., A. Agarwal, T. Fischer, H.-Y. Chen, X. Jiang, J. Lahann, and H. Hess. Quantifying the performance of protein-resisting surfaces at ultra-low protein coverages using kinesin motor proteins as probes. Adv. Mater. 19:3171–3176, 2007.

    Article  Google Scholar 

  23. Kwak, D., Y. G. Wu, and T. A. Horbett. Fibrinogen and von Willebrand’s factor adsorption are both required for platelet adhesion from sheared suspensions to polayethylene preadsorbed with blood plasma. J. Biomed. Mater. Res. A 74A:69–83, 2005.

    Article  Google Scholar 

  24. Ma, H., J. Hyun, P. Stiller, and A. Chilkoti. “Non-fouling” oligo (ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 16:338–341, 2004.

    Article  Google Scholar 

  25. Mosesson, M. W. Fibrin polymerization and its regulatory role in hemostasis. J. Lab. Clin. Med. 116:8–17, 1990.

    Google Scholar 

  26. Ozeki, T., V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J. M. Catchmark, and W. O. Hancock. Surface-bound casein modulates the adsorption and activity of kinesin on SiO2 surfaces. Biophys. J. 96:3305–3318, 2009.

    Article  Google Scholar 

  27. Rodriguez-Pardo, L., J. F. Rodriguez, C. Gabrielli, and R. Brendel. Sensitivity, noise, and resolution in QCM sensors in liquid media. IEEE Sens. J. 5:1251–1257, 2005.

    Article  Google Scholar 

  28. Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 86:1341–1343, 2009.

    Article  Google Scholar 

  29. Suh, K. Y., R. Langer, and J. Lahann. A novel photodefinable reactive polymer coating and its use for microfabrication of hydrogel elements. Adv. Mater. 16:1401–1405, 2004.

    Article  Google Scholar 

  30. Zhang, M. Q., T. Desai, and M. Ferrari. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19:953–960, 1998.

    Article  Google Scholar 

  31. Zhang, Z., M. Zhang, S. F. Chen, T. A. Horbetta, B. D. Ratner, and S. Y. Jiang. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–4291, 2008.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Amit Singh of PERC, University of Florida, and Siheng He for helpful discussions. H.H. was supported by NSF Award DMR 1015486.

Conflict of interest

The authors do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Hess.

Additional information

Associate Editor David Sept oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, A., Luria, E., Deng, X. et al. Landing Rate Measurements to Detect Fibrinogen Adsorption to Non-fouling Surfaces. Cel. Mol. Bioeng. 5, 320–326 (2012). https://doi.org/10.1007/s12195-012-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0239-6

Keywords

Navigation