Skip to main content

Measurement of Cryoprotectant Permeability in Adherent Endothelial Cells and Applications to Cryopreservation


Vitrification is a promising approach for cryopreservation of adherent cells because it allows complete avoidance of ice formation. However, high cryoprotectant (CPA) concentrations are required to prevent freezing, and exposure to high CPA concentrations increases the risk of osmotic and toxic damage. Although cell membrane transport modeling can be used for rational design of CPA equilibration procedures, the necessary permeability data is extremely scarce for adherent cells. This study validates a method for in situ measurement of water and CPA permeability in adherent cells based on the fluorescence quenching of intracellular calcein. Permeability parameters for endothelial monolayers were measured during exposure to four common cryoprotectants (dimethyl sulfoxide, ethylene glycol, propylene glycol and glycerol) at temperatures of 4, 21, and 37 °C. Propylene glycol exhibited the highest permeability and gycerol the lowest. The data was fit using an Arrhenius model, yielding activation energies ranging from 45 to 61 kJ/mol for water transport and 84 to 99 kJ/mol for CPA transport. These permeability parameters will facilitate the development of mathematically-optimized CPA equilibration procedures for vitrification of adherent endothelial cells. Our results establish calcein fluorescence quenching as an effective method for measurement of CPA permeability in adherent cells.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Acker, J. P., A. Larese, H. Yang, A. Petrenko, and L. E. McGann. Intracellular ice formation is affected by cell interactions. Cryobiology 38:363–371, 1999.

    Article  Google Scholar 

  2. 2.

    Altamirano, J., M. S. Brodwick, and F. J. Alvarez-Leefmans. Regulatory volume decrease and intracellular Ca2+ in murine neuroblastoma cells studied with fluorescent probes. J. Gen. Physiol. 112:145–160, 1998.

    Article  Google Scholar 

  3. 3.

    Armitage, W. J., and B. K. Juss. Freezing monolayers of cells without gap junctions. Cryobiology 46:194–196, 2003.

    Article  Google Scholar 

  4. 4.

    Beier, A. F. J., J. C. Schulz, D. Dörr, A. Katsen-Globa, A. Sachinidis, J. Hescheler, and H. Zimmermann. Effective surface-based cryopreservation of human embryonic stem cells by vitrification. Cryobiology 63:175–185, 2011.

    Article  Google Scholar 

  5. 5.

    Benson, J. D., C. C. Chicone, and J. K. Critser. A general model for the dynamics of cell volume, global stability, and optimal control. J. Math. Biol. 63:339–359, 2010.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Benson, J. D., A. J. Kearsley, and A. Z. Higgins. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology 64(3):144–51, 2012. doi:10.1016/j.cryobiol.2012.01.001.

    Google Scholar 

  7. 7.

    Chen, P. Y., D. Pearce, and A. S. Verkman. Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry 27:5713–5718, 1988.

    Article  Google Scholar 

  8. 8.

    Crowe, W. E., J. Altamirano, L. Huerto, and F. J. Alvarez-Leefmans. Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69:283–296, 1995.

    Article  Google Scholar 

  9. 9.

    Ebertz, S. L., and L. E. McGann. Osmotic parameters of cells from a bioengineered human corneal equivalent and consequences for cryopreservation. Cryobiology 45:109–117, 2002.

    Article  Google Scholar 

  10. 10.

    Ebertz, S. L., and L. E. McGann. Cryoprotectant permeability parameters for cells used in a bioengineered human corneal equivalent and applications for cryopreservation. Cryobiology 49:169–180, 2004.

    Article  Google Scholar 

  11. 11.

    Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597–604, 2001.

    Article  Google Scholar 

  12. 12.

    Fahy, G., B. Wowk, J. Wu, and S. Paynter. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35, 2004.

    Article  Google Scholar 

  13. 13.

    Fan, W.-X., X.-H. Ma, T.-Q. Liu, and Z.-F. Cui. Vitrification of corneal endothelial cells in a monolayer. J. Biosci. Bioeng. 106:610–613, 2008.

    Article  Google Scholar 

  14. 14.

    Farinas, J., M. Kneen, M. Moore, and A. S. Verkman. Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J. Gen. Physiol. 110:283–296, 1997.

    Article  Google Scholar 

  15. 15.

    Farinas, J., V. Simanek, and A. S. Verkman. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs. Biophys. J. 68:1613–1620, 1995.

    Article  Google Scholar 

  16. 16.

    Farinas, J., and A. S. Verkman. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophys. J. 71:3511–3522, 1996.

    Article  Google Scholar 

  17. 17.

    Gao, D. Y., J. Liu, C. Liu, L. E. McGann, P. F. Watson, F. W. Kleinhans, P. Mazur, E. S. Critser, and J. K. Critser. Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum. Reprod. 10:1109–1122, 1995.

    Google Scholar 

  18. 18.

    Hamann, S., J. F. Kiilgaard, M. la Cour, J. U. Prause, and T. Zeuthen. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp. Eye Res. 76:493–504, 2003.

    Article  Google Scholar 

  19. 19.

    Hamann, S., J. F. Kiilgaard, T. Litman, F. J. Alvarez-Leefmans, B. R. Winther, and T. Zeuthen. Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 12:139–145, 2002.

    Article  Google Scholar 

  20. 20.

    Higgins, A. Z., and J. O. M. Karlsson. Analysis of solution exchange in flow chambers with applications to cell membrane permeability measurement. Cell. Mol. Bioeng. 3:269–285, 2010.

    Article  Google Scholar 

  21. 21.

    Higgins, A. Z., and J. O. M. Karlsson. Comparison of cell membrane water permeability in monolayers and suspensions. Cryo Lett. 33:95–106, 2012.

    Google Scholar 

  22. 22.

    Irimia, D., and J. O. M. Karlsson. Kinetics and mechanism of intercellular ice propagation in a micropatterned tissue construct. Biophys. J. 82:1858–1868, 2002.

    Article  Google Scholar 

  23. 23.

    Irimia, D., and J. O. M. Karlsson. Kinetics of intracellular ice formation in one-dimensional arrays of interacting biological cells. Biophys. J. 88:647–660, 2005.

    Article  Google Scholar 

  24. 24.

    Karlsson, J. O. M., and M. Toner. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256, 1996.

    Article  Google Scholar 

  25. 25.

    Karlsson, J. O. M., A. I. Younis, A. W. S. Chan, K. G. Gould, and A. Eroglu. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol. Reprod. Dev. 76:321–333, 2009.

    Article  Google Scholar 

  26. 26.

    Kleinhans, F. W. Membrane permeability modeling: Kedem–Katchalsky vs. a two-parameter formalism. Cryobiology 37:271–289, 1998.

    Article  Google Scholar 

  27. 27.

    Laws, W. R., and P. B. Contino. Fluorescence quenching studies: analysis of nonlinear Stern–Volmer data. Methods Enzymol. 210:448–463, 1992.

    Article  Google Scholar 

  28. 28.

    Lawson, A., H. Ahmad, and A. Sambanis. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions. Cryobiology 62:115–122, 2011.

    Article  Google Scholar 

  29. 29.

    Levin, M. H., and A. S. Verkman. Aquaporin-dependent water permeation at the mouse ocular surface: in vivo microfluorimetric measurements in cornea and conjunctiva. Invest. Ophthalmol. Vis. Sci. 45:4423–4432, 2004.

    Article  Google Scholar 

  30. 30.

    Levin, R. L. A generalized method for the minimization of cellular osmotic stresses and strains during the introduction and removal of permeable cryoprotectants. J. Biomech. Eng. 104:81–87, 1982.

    Article  Google Scholar 

  31. 31.

    Liu, K., Y. Yang, and J. Mansbridge. Comparison of the stress response to cryopreservation in monolayer and three-dimensional human fibroblast cultures: stress proteins, MAP kinases, and growth factor gene expression. Tissue Eng. 6:539–554, 2000.

    Article  Google Scholar 

  32. 32.

    Ma, W., T. O’Shaughnessy, and E. Chang. Cryopreservation of adherent neuronal networks. Neurosci. Lett. 403:84–89, 2006.

    Article  Google Scholar 

  33. 33.

    Magalhaes, R., A. K. Pr, F. Wen, X. Zhao, H. Yu, and L. L. Kuleshova. The use of vitrification to preserve primary rat hepatocyte monolayer on collagen-coated poly(ethylene-terephthalate) surfaces for a hybrid liver support system. Biomaterials 30:4136–4142, 2009.

    Article  Google Scholar 

  34. 34.

    Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:125–142, 1984.

    Google Scholar 

  35. 35.

    McGrath, J. J. Quantitative measurement of cell membrane transport: technology and applications. Cryobiology 34:315–334, 1997.

    Article  Google Scholar 

  36. 36.

    Mitchell, C. H., J. C. Fleischhauer, W. D. Stamer, K. Peterson-Yantorno, and M. M. Civan. Human trabecular meshwork cell volume regulation. Am. J. Physiol. Cell Physiol. 283:315–326, 2002.

    Google Scholar 

  37. 37.

    Miyamoto, Y., S. Enosawa, T. Takeuchi, and T. Takezawa. Cryopreservation in situ of cell monolayers on collagen vitrigel membrane culture substrata: ready-to-use preparation of primary hepatocytes and ES cells. Cell. Transplant. 18:619–626, 2009.

    Google Scholar 

  38. 38.

    Mukherjee, I. N., Y. C. Song, and A. Sambanis. Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations. Cryobiology 55:10–18, 2007.

    Article  Google Scholar 

  39. 39.

    Nie, Y., V. Bergendahl, D. J. Hei, J. M. Jones, and S. P. Palecek. Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol. Prog. 25:20–31, 2009.

    Article  Google Scholar 

  40. 40.

    Pasch, J., A. Schiefer, I. Heschel, and G. Rau. Cryopreservation of keratinocytes in a monolayer. Cryobiology 39:158–168, 1999.

    Article  Google Scholar 

  41. 41.

    Paynter, S. J., K. J. Andrews, N. N. Vinh, C. M. Kelly, A. E. Rosser, N. N. Amso, and S. B. Dunnett. Membrane permeability coefficients of murine primary neural brain cells in the presence of cryoprotectant. Cryobiology 58:308–314, 2009.

    Article  Google Scholar 

  42. 42.

    Pegg, D. E. Cryopreservation of vascular endothelial cells as isolated cells and as monolayers. Cryobiology 44:46–53, 2002.

    Article  Google Scholar 

  43. 43.

    Pichugin, Y., G. M. Fahy, and R. Morin. Cryopreservation of rat hippocampal slices by vitrification. Cryobiology 52:228–240, 2006.

    Article  Google Scholar 

  44. 44.

    Shetlar, M. D. A generalized form of the Stern–Volmer equation and its application. Mol. Photochem. 6:191–205, 1974.

    Google Scholar 

  45. 45.

    Solenov, E., H. Watanabe, G. T. Manley, and A. S. Verkman. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am. J. Physiol. Cell Physiol. 286:426–432, 2004.

    Article  Google Scholar 

  46. 46.

    Song, Y. C., B. S. Khirabadi, F. Lightfoot, K. G. M. Brockbank, and M. J. Taylor. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol. 18:296–299, 2000.

    Article  Google Scholar 

  47. 47.

    Srinivas, S. P., J. A. Bonanno, E. Larivière, D. Jans, and W. Van Driessche. Measurement of rapid changes in cell volume by forward light scattering. Pflugers Arch. 447:97–108, 2003.

    Article  Google Scholar 

  48. 48.

    Stevenson, D. J., C. Morgan, E. Goldie, G. Connel, and M. H. Grant. Cryopreservation of viable hepatocyte monolayers in cryoprotectant media with high serum content: metabolism of testosterone and kaempherol post-cryopreservation. Cryobiology 49:97–113, 2004.

    Article  Google Scholar 

  49. 49.

    Stott, S. L., and J. O. M. Karlsson. Visualization of intracellular ice formation using high-speed video cryomicroscopy. Cryobiology 58:84–95, 2009.

    Article  Google Scholar 

  50. 50.

    Verkman, A. S. Water permeability measurement in living cells and complex tissues. J. Membr. Biol. 173:73–87, 2000.

    Article  Google Scholar 

  51. 51.

    Wusteman, M. C., and D. E. Pegg. Differences in the requirements for cryopreservation of porcine aortic smooth muscle and endothelial cells. Tissue Eng. 7:507–518, 2001.

    Article  Google Scholar 

  52. 52.

    Wusteman, M. C., D. E. Pegga, M. P. Robinsonb, L.-H. Wanga, and P. Fitcha. Vitrification media: toxicity, permeability, and dielectric properties. Cryobiology 44:24–37, 2002.

    Article  Google Scholar 

  53. 53.

    Xu, X., S. Cowley, C. J. Flaim, W. James, L. Seymour, and Z. Cui. The roles of apoptotic pathways in low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 26:827–837, 2009.

    Article  Google Scholar 

  54. 54.

    Yarmush, M. L., M. Toner, J. C. Y. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins. Hepatic tissue engineering—development of critical technologies. Ann. N. Y. Acad. Sci. 665:238–252, 1992.

    Article  Google Scholar 

  55. 55.

    Yoshimori, T., and H. Takamatsu. 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells. Cryobiology 58:52–61, 2009.

    Article  Google Scholar 

  56. 56.

    Zelenina, M., and H. Brismar. Osmotic water permeability measurements using confocal laser scanning microscopy. Eur. Biophys. J. 29:165–171, 2000.

    Article  Google Scholar 

Download references


This work was supported by funding from the Medical Research Foundation of Oregon (MRF Grant #1015). Allyson Fry received support from the Shirley Kuse Fellowship and Diversity Advancement Pipeline Fellowship. The authors would also like to acknowledge Austin Rondema and Nadeem Houran for their assistance with fluorescence quenching experiments.

Author information



Corresponding author

Correspondence to Adam Z. Higgins.

Additional information

Associate Editor Martin L. Yarmush oversaw the review of this article.



We described the relationship between fluorescence intensity and cell volume using a modified Stern–Volmer model. The Stern–Volmer relationship describes the change in fluorescence intensity due to physical interaction between a fluorophore and quenching molecule as follows:

$$ F = \frac{{F^{*} }}{1 + KQ} $$

where F is the fluorescence intensity of the fluorophore in the presence of quenching interactions, F* is the fluorescence intensity in the absence of quenching, K is the quenching constant, and Q is the quencher concentration. Previous studies suggest that a portion of intracellular calcein molecules are not free to interact with quencher molecules because of binding or compartmentalization within the cell.8,19 Modifications to the Stern–Volmer relationship have been described previously that account for accessible and inaccessible fluorophores, where it is assumed that any change in fluorescence intensity is due to the physical interaction of quenchers with accessible fluorophores only and the fluorescence intensity of inaccessible fluorophores remains constant.27,44 Similarly, we can divide the intracellular calcein molecules into two groups, one of which is free to interact with intracellular quencher molecules, and one that does not interact with the quenchers. The calcein molecules that are free to interact with quenchers yield a fluorescence intensity described by Eq. (A1), whereas non-interacting fluorophores give rise to a constant intensity, resulting in the following equation for the total fluorescence:

$$ F = \frac{{F^{*} }}{1 + KQ} + F_{\text{B}} $$

where F B is the fluorescence intensity due to non-interacting calcein molecules (i.e., the portion of the fluorescence that is not sensitive to quencher concentration). The quencher concentration can be expressed in terms of the cell volume by assuming that the endogenous quencher molecules (e.g., intracellular proteins45) are membrane impermeable and trapped within the cell. This assumption results in the following expression for the quencher concentration:

$$ Q = \frac{{Q_{0} V_{\text{w0}} }}{{V_{\text{w}} + V_{\text{CPA}} }} $$

where Q 0 is the quencher concentration under isotonic conditions. Substituting Eqs. (A3) into (A2) and normalizing by the fluorescence intensity under isotonic conditions (F 0) results in:

$$ \overline{F} \equiv \frac{F}{{F_{0} }} = \left( {\frac{{\overline{V} + \beta \alpha }}{{\overline{V} + \alpha }}} \right)\left( {\frac{1 + \alpha }{1 + \beta \alpha }} \right) $$

where \( \alpha \equiv KQ_{0} \) and \( \beta \equiv \frac{{F_{\text{B}} }}{{F^{*} + F_{\text{B}} }} \). The parameter α describes the extent of quenching that occurs under isotonic conditions, and β is the fraction of total fluorophores that is insensitive to quencher concentration and therefore insensitive to cell volume.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fry, A.K., Higgins, A.Z. Measurement of Cryoprotectant Permeability in Adherent Endothelial Cells and Applications to Cryopreservation. Cel. Mol. Bioeng. 5, 287–298 (2012).

Download citation


  • Adherent cells
  • Vitrification
  • Calcein
  • Fluorescence quenching
  • Membrane permeability