Perturbations in Microtubule Mechanics from Tubulin Preparation


Microtubules are essential structures for cellular organization. They support neuronal processes and cilia, they are the scaffolds for the mitotic spindle, and they are the tracks for intracellular transport that actively organizes material and information within the cell. The mechanical properties of microtubules have been studied for almost 30 years, yet the results from different groups are startlingly disparate, ranging over an order of magnitude. Here we present results demonstrating the effects of purification, associated-protein content, age, and fluorescent labeling on the measured persistence length using the freely fluctuating filament method. We find that small percentages (<1%) of residual microtubule-associated proteins left over in the preparation can cause the persistence length to double, and that these proteins also affect the persistence length over time. Interestingly, we find that the fraction of labeled tubulin dimers does not affect the measured persistence length. Further, we have enhanced the analysis method established by previous groups. We have added a bootstrapping with resampling analysis to estimate the error in the variance data used to determine the persistence length. Thus, we are able to perform a weighted fit to the data to more accurately determine the persistence length.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    Arnal, I., and R. H. Wade. How does taxol stabilize microtubules? Curr. Biol. 5:900–908, 1995.

    Article  Google Scholar 

  2. 2.

    Brangwynne, C. P., G. H. Koenderink, E. Barry, Z. Dogic, F. C. MacKintosh, and D. A. Weitz. Bending dynamics of fluctuating biopolymers probed by automated high-resolution filament tracking. Biophys. J. 93:346–359, 2007.

    Article  Google Scholar 

  3. 3.

    Brown, T. B., and W. O. Hancock. A polarized microtubule array for kinesin-powered nanoscale assembly and force generation. Nano Lett. 2:1131–1135, 2002.

    Article  Google Scholar 

  4. 4.

    Cassimeris, L., D. Gard, P. T. Tran, and H. P. Erickson. XMAP215 is a long thin molecule that does not increase microtubule stiffness. J. Cell Sci. 114:3025–3033, 2001.

    Google Scholar 

  5. 5.

    Chrétien, D., F. Metoz, F. Verde, E. Karsenti, and R. H. Wade. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J. Cell Biol. 117:1031–1040, 1992.

    Article  Google Scholar 

  6. 6.

    Chrétien, D., and R. H. Wade. New data on the microtubule surface lattice. Biol. Cell 71:161–174, 1991.

    Article  Google Scholar 

  7. 7.

    Clemmens, J., H. Hess, R. Doot, C. M. Matzke, G. D. Bachand, and V. Vogel. Motor-protein “roundabouts”: microtubules moving on kinesin-coated tracks through engineered networks. Lab Chip 4:83–86, 2004.

    Article  Google Scholar 

  8. 8.

    Desai, A., and T. J. Mitchison. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13:83–117, 1997.

    Article  Google Scholar 

  9. 9.

    Dye, R. B., S. P. Fink, and R. C. Williams. Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau. J. Biol. Chem. 268:6847–6850, 1993.

    Google Scholar 

  10. 10.

    Efron, B., and R. Tibshirani. An Introduction to the Bootstrap. New York: Chapman and Hall, 1993.

    Google Scholar 

  11. 11.

    Felgner, H., R. Frank, J. Biernat, E. M. Mandelkow, E. Mandelkow, B. Ludin, A. Matus, and M. Schliwa. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 138:1067–1075, 1997.

    Article  Google Scholar 

  12. 12.

    Gardner, M. K., B. D. Charlebois, I. M. Jánosi, J. Howard, A. J. Hunt, and D. J. Odde. Rapid microtubule self-assembly kinetics. Cell 146:582–592, 2011.

    Article  Google Scholar 

  13. 13.

    Gittes, F. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923–934, 1993.

    Article  Google Scholar 

  14. 14.

    Goel, A., and V. Vogel. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat. Nanotechnol. 3:465–475, 2008.

    Article  Google Scholar 

  15. 15.

    Hawkins, T., M. Mirigian, M. Selcuk Yasar, and J. L. Ross. Mechanics of microtubules. J. Biomech. 43:23–30, 2010.

    Article  Google Scholar 

  16. 16.

    Hess, S. T., T. P. Girirajan, and M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–4272, 2006.

    Article  Google Scholar 

  17. 17.

    Hutchins, B. M., M. Platt, W. O. Hancock, and M. E. Williams. Directing transport of CoFe2O4-functionalized microtubules with magnetic fields. Small 3:126–131, 2007.

    Article  Google Scholar 

  18. 18.

    Hyman, A., D. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman, and T. Mitchison. Preparation of modified tubulins. Methods Enzymol. 196:478–485, 1991.

    Article  Google Scholar 

  19. 19.

    Janson, M. E., and M. Dogterom. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophys. J. 87:2723–2736, 2004.

    Article  Google Scholar 

  20. 20.

    Kawaguchi, K., S. Ishiwata, and T. Yamashita. Temperature dependence of the flexural rigidity of single microtubules. Biochem. Biophys. Res. Commun. 366:637–642, 2008.

    Article  Google Scholar 

  21. 21.

    Kawaguchi, K., and A. Yamaguchi. Temperature dependence rigidity of non-taxol stabilized single microtubules. Biochem. Biophys. Res. Commun. 402:66–69, 2010.

    Article  Google Scholar 

  22. 22.

    Limpert, E., W. A. Stahel, and M. Abbt. Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352, 2001.

    Article  Google Scholar 

  23. 23.

    Mickey, B., and J. Howard. Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 130:909–917, 1995.

    Article  Google Scholar 

  24. 24.

    Nitta, T., and H. Hess. Dispersion in active transport by kinesin-powered molecular shuttles. Nano Lett. 5:1337–1342, 2005.

    Article  Google Scholar 

  25. 25.

    Odde, D. J., L. Ma, A. H. Briggs, A. DeMarco, and M. W. Kirschner. Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112(Pt 19):3283–3288, 1999.

    Google Scholar 

  26. 26.

    Ott, A., M. Magnasco, A. Simon, and A. Libchaber. Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 48:R1642–R1645, 1993.

    Article  Google Scholar 

  27. 27.

    Pampaloni, F., and E. L. Florin. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 26:302–310, 2008.

    Article  Google Scholar 

  28. 28.

    Pampaloni, F., G. Lattanzi, A. Jonás, T. Surrey, E. Frey, and E. L. Florin. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl Acad. Sci. USA 103:10248–10253, 2006.

    Article  Google Scholar 

  29. 29.

    Peloquin, J., Y. Komarova, and G. Borisy. Conjugation of fluorophores to tubulin. Nat. Methods 2:299–303, 2005.

    Article  Google Scholar 

  30. 30.

    Politis, D. N., and J. P. Romano. Subsampling. New York: Springer, 1999.

    Google Scholar 

  31. 31.

    R Development Code Team. R Code, 2011.

  32. 32.

    Raviv, U., T. Nguyen, R. Ghafouri, D. J. Needleman, Y. Li, H. P. Miller, L. Wilson, R. F. Bruinsma, and C. R. Safinya. Microtubule protofilament number is modulated in a stepwise fashion by the charge density of an enveloping layer. Biophys. J. 92:278–287, 2007.

    Article  Google Scholar 

  33. 33.

    Shelanski, M. L., F. Gaskin, and C. R. Cantor. Microtubule assembly in the absence of added nucleotides. Proc. Natl Acad. Sci. USA 70:765–768, 1973.

    Article  Google Scholar 

  34. 34.

    Taute, K. M., F. Pampaloni, E. Frey, and E. L. Florin. Microtubule dynamics depart from the wormlike chain model. Phys. Rev. Lett. 100:028102, 2008.

    Article  Google Scholar 

  35. 35.

    Valdman, D., P. J. Atzberger, D. Yu, S. Kuei, and M. T. Valentine. Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers. Biophys. J. 102:1144–1153, 2012.

    Article  Google Scholar 

  36. 36.

    Wakida, N. M., C. S. Lee, E. T. Botvinick, L. Z. Shi, A. Dvornikov, and M. W. Berns. Laser nanosurgery of single microtubules reveals location-dependent depolymerization rates. J. Biomed. Opt. 12:024022, 2007.

    Article  Google Scholar 

  37. 37.

    Zhang, D., K. D. Grode, S. F. Stewman, J. D. Diaz-Valencia, E. Liebling, U. Rath, T. Riera, J. D. Currie, D. W. Buster, A. B. Asenjo, H. J. Sosa, J. L. Ross, A. Ma, S. L. Rogers, and D. J. Sharp. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration. Nat. Cell Biol. 13:361–370, 2011.

    Article  Google Scholar 

Download references


TLH was supported in part from the North East Alliance for Graduate Education and Professoriate (NEAGEP) grant from the NSF. TLH, MM, and MSY were supported on an NSF grant #1039403 and supplement #0928540 to JLR and DS from the Nano and Bio Mechanics Program, Civil Mechanical, and Manufacturing Innovation Directorate. DLS was supported by funds from the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. We thank Carey Fagerstrom for her preparation of the in-house tubulin and helpful discussions. We thank John Crocker for valuable discussions on statistics and log-normal data sets.

Author information



Corresponding author

Correspondence to Jennifer L. Ross.

Additional information

Associate Editor William O. Hancock oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hawkins, T.L., Mirigian, M., Li, J. et al. Perturbations in Microtubule Mechanics from Tubulin Preparation. Cel. Mol. Bioeng. 5, 227–238 (2012).

Download citation


  • Flexural rigidity
  • Bending stiffness
  • Cytoskeletal network