Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons

Abstract

Growing experimental evidence suggests that mechanical tension plays a significant role in determining the growth, guidance, and function of neurons. Mechanical tension in axons contributes to neurotransmitter clustering at the Drosophila neuromuscular junction (NMJ) and is actively regulated by neurons both in vitro and in vivo. In this work, we applied mechanical strain on in vivo Drosophila neurons and in vitro Aplysia neurons and studied their vesicle dynamics by live-imaging. Our experiments show that mechanical stretch modulates the dynamics of vesicles in two different model systems: (1) The global accumulation of synaptic vesicles (SV) at the Drosophila NMJ and (2) the local motion of individual large dense core vesicles (LDCV) in Aplysia neurites. Specifically, a sustained stretch results in enhanced SV accumulation in the Drosophila NMJ. This increased SV accumulation occurs in the absence of extracellular Ca2+, plateaus after approximately 50 min, and persists for at least 30 min after stretch is reduced. On the other hand, mechanical compression in Aplysia neurites immediately disrupts LDCV motion, leading to decreased range and processivity. This impairment of LDCV motion persists for at least 15 min after tension is restored. These results show that mechanical stretch modulates both local and global vesicle dynamics and strengthens the notion that tension serves a role in regulating neuronal function.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11(7):36–41, 2004.

  2. 2.

    Ahmed, W. W., M. H. Kural, and T. A. Saif. A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomater. 6(8):2979–2990, 2010.

  3. 3.

    Ayali, A. The function of mechanical tension in neuronal and network development. Integr. Biol. 2(4):178–182, 2010.

  4. 4.

    Bernal, R., P. A. Pullarkat, and F. Melo. Mechanical properties of axons. Phys. Rev. Lett. 99(1):018301, 2007.

  5. 5.

    Bixby, J. L. Ultrastructural observations on synapse elimination in neonatal rabbit skeletal muscle. J. Neurocytol. 10(1):81–100, 1981.

  6. 6.

    Bloom, O., E. Evergren, N. Tomilin, O. Kjaerulff, P. Low, L. Brodin, V. A. Pieribone, P. Greengard, and O. Shupliakov. Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161(4):737–747, 2003.

  7. 7.

    Bray, D. Mechanical tension produced by nerve cells in tissue culture. J. Cell Sci. 37:391–410, 1979.

  8. 8.

    Budnik, V., and C. Ruiz-Canada. The Fly Neuromuscular Junction. San Diego: Elsevier, p. 421, 2006.

  9. 9.

    Chen, B. M., and A. D. Grinnell. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269(5230):1578–1580, 1995.

  10. 10.

    Chen, B. M., and A. D. Grinnell. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci. 17(3):904–916, 1997.

  11. 11.

    Cingolani, L. A., and Y. Goda. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9(5):344–356, 2008.

  12. 12.

    Ciobanu, L., S. S. Rubakhin, J. N. Stuart, R. R. Fuller, A. G. Webb, and J. V. Sweedler. Characterization of the physicochemical parameters of dense core atrial gland and lucent red hemiduct vesicles in Aplysia californica. Anal. Chem. 76(8):2331–2335, 2004.

  13. 13.

    Dennerll, T. J., P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann. The cytomechanics of axonal elongation and retraction. J. Cell Biol. 109(6):3073–3083, 1989.

  14. 14.

    Dillon, C., and Y. Goda. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28(1):25–55, 2005.

  15. 15.

    Duffy, J. B. GAL4 system in Drosophila: a fly geneticist’s swiss army knife. Genesis 34:1–15, 2002.

  16. 16.

    Fatt, P., and B. Katz. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117(1):109–128, 1952.

  17. 17.

    Forscher, P., and S. J. Smith. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107(4):1505–1516, 1988.

  18. 18.

    Franze, K., J. Gerdelmann, M. Weick, T. Betz, S. Pawlizak, M. Lakadamyali, J. Bayer, K. Rillich, M. Gogler, Y. Lu, A. Reichenbach, P. A. Janmey, and J. A. Kas. Neurite branch retraction is caused by a threshold-dependent mechanical impact. Biophys. J. 97(7):1883–1890, 2009.

  19. 19.

    Franze, K., and J. Guck. The biophysics of neuronal growth. Rep. Prog. Phys. 73:094601, 2010.

  20. 20.

    Franze, K., A. Reichenbach, and J. Kas. Biomechanics of the CNS. In: Mechanosensitivity of the Nervous System, Vol. 10, edited by A. Kamkin, and I. Kiseleva. Dordrecht: Springer, 2008, pp. 173–213.

  21. 21.

    Gittes, F., E. Meyhofer, S. Baek, and J. Howard. Directional loading of the kinesin motor molecule as it buckles a microtubule. Biophys. J. 70(1):418–429, 1996.

  22. 22.

    Goldberg, D. J., and D. W. Burmeister. Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J. Cell Biol. 103(5):1921–1931, 1986.

  23. 23.

    Grinnell, A. D., B. M. Chen, A. Kashani, J. Lin, K. Suzuki, and Y. Kidokoro. The role of integrins in the modulation of neurotransmitter release from motor nerve terminals by stretch and hypertonicity. J. Neurocytol. 32(5–8):489–503, 2003.

  24. 24.

    Hawkins, R. D., E. R. Kandel, and S. A. Siegelbaum. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu. Rev. Neurosci. 16:625–665, 1993.

  25. 25.

    Heidemann, S. R., and R. E. Buxbaum. Tension as a regulator and integrator of axonal growth. Cell Motil. Cytoskelet. 17(1):6–10, 1990.

  26. 26.

    Hummon, A. B., A. Amare, and J. V. Sweedler. Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25(1):77–98, 2006.

  27. 27.

    Kamber, D., H. Erez, and M. E. Spira. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone. Exp. Neurol. 219(1):112–125, 2009.

  28. 28.

    Keshishian, H., K. S. Broadie, A. Chiba, and M. Bate. The drosophila neuromuscular junction: a model system for studying synaptic development and function. Annu. Rev. Neurosci. 19:545–575, 1996.

  29. 29.

    Korneliussen, H., and J. K. Jansen. Morphological aspects of the elimination of polyneuronal innervation of skeletal muscle fibres in newborn rats. J. Neurocytol. 5(8):591–604, 1976.

  30. 30.

    Lamoureux, P., R. E. Buxbaum, and S. R. Heidemann. Direct evidence that growth cones pull. Nature 340(6229):159–162, 1989.

  31. 31.

    Morrison-Graham, K. An anatomical and electrophysiological study of synapse elimination at the developing frog neuromuscular junction. Dev. Biol. 99(2):298–311, 1983.

  32. 32.

    O’Toole, M., P. Lamoureux, and K. E. Miller. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys. J. 94(7):2610–2620, 2008.

  33. 33.

    O’Toole, M., R. Latham, R. M. Baqri, and K. E. Miller. Modeling mitochondrial dynamics during in vivo axonal elongation. J. Theor. Biol. 255(4):369–377, 2008.

  34. 34.

    O’Toole, M., and K. E. Miller. The role of stretching in slow axonal transport. Biophys. J. 100(2):351–360, 2011.

  35. 35.

    Owald, D., and S. J. Sigrist. Assembling the presynaptic active zone. Curr. Opin. Neurobiol. 19(3):311–318, 2009.

  36. 36.

    Pender, N., and C. A. McCulloch. Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching. J. Cell Sci. 100:187–193, 1991.

  37. 37.

    Pfister, B. J., D. P. Bonislawski, D. H. Smith, and A. S. Cohen. Stretch-grown axons retain the ability to transmit active electrical signals. FEBS Lett. 580(14):3525–3531, 2006.

  38. 38.

    Pfister, B. J., A. Iwata, D. F. Meaney, and D. H. Smith. Extreme stretch growth of integrated axons. J. Neurosci. 24(36):7978–7983, 2004.

  39. 39.

    Putnam, A. J., K. Schultz, and D. J. Mooney. Control of microtubule assembly by extracellular matrix and externally applied strain. AJP—Cell Physiol. 280(3):C556–C564, 2001.

  40. 40.

    Rajagopalan, J., A. Tofangchi, and T. A. Saif. Drosophila neurons actively regulate axonal tension in vivo. Biophys. J. 99(10):3208–3215, 2010.

  41. 41.

    Rogers, S. S., T. A. Waigh, X. Zhao, and J. R. Lu. Precise particle tracking against a complicated background: polynomial fitting with gaussian weight. Phys. Biol. 4:220–227, 2007.

  42. 42.

    Romanova, E. V., S. P. Oxley, S. S. Rubakhin, P. W. Bohn, and J. V. Sweedler. Self-assembled monolayers of alkanethiols on gold modulate electrophysiological parameters and cellular morphology of cultured neurons. Biomaterials 27(8):1665–1669, 2006.

  43. 43.

    Rubakhin, S. S., R. W. Garden, R. R. Fuller, and J. V. Sweedler. Measuring the peptides in individual organelles with mass spectrometry. Nat. Biotechnol. 18(2):172–175, 2000.

  44. 44.

    Shemesh, O. A., H. Erez, I. Ginzburg, and M. E. Spira. Tau-induced traffic jams reflect organelles accumulation at points of microtubule polar mismatching. Traffic 9(4):458–471, 2008.

  45. 45.

    Shemesh, O. A., and M. E. Spira. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol. 119(2):235–248, 2010.

  46. 46.

    Siechen, S., S. Yang, A. Chiba, and T. A. Saif. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl Acad. Sci. USA 106(31):12611–12616, 2009.

  47. 47.

    Sigrist, S. J., D. F. Reiff, P. R. Thiel, J. R. Steinert, and C. M. Schuster. Experience-dependent strengthening of Drosophila neuromuscular junctions. J. Neurosci. 23(16):6546–6556, 2003.

  48. 48.

    Smith, D. H., J. A. Wolf, and D. F. Meaney. A new strategy to produce sustained growth of central nervous system axons: continuous mechanical tension. Tissue Eng. 7(2):131–139, 2001.

  49. 49.

    Suter, D. M., L. D. Errante, V. Belotserkovsky, and P. Forscher. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J. Cell Biol. 141(1):227–240, 1998.

  50. 50.

    Suter, D. M., and P. Forscher. Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by src family tyrosine kinase activity. J. Cell Biol. 155(3):427–438, 2001.

  51. 51.

    Suter, D. M., and K. E. Miller. The emerging role of forces in axonal elongation. Prog. Neurobiol. 94:91–101, 2011.

  52. 52.

    Weiss, P. Experiments on cell and axon orientation in vitro; the role of colloidal exudates in tissue organization. J. Exp. Zool. 100:353–386, 1945.

  53. 53.

    Zhang, Y. Q., C. K. Rodesch, and K. S. Broadie. Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34(1–2):142–145, 2002.

Download references

Acknowledgments

The authors thank Dr. J. Rajagopalan for discussions concerning the manuscript and X. Wang for preparation of neuronal cultures. W. W. Ahmed thanks the Arnold and Mabel Foundation and the Beckman Institute for Advanced Science and Technology for their generous support. This work was supported by the National Institutes of Health (NINDS NS031609, R25 CA154015) and the National Science Foundation (CMMI 0800870, ECCS 0801928, DGE 0965918, CBET 0939511). Microfabrication facilities were used at the Micro and Nanotechnology Laboratory and imaging facilities were used at the Institute for Genomic Biology at the University of Illinois at Urbana-Champaign.

Author information

Correspondence to T. A. Saif.

Additional information

Associate Editor William H. Guilford oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie S1 (AVI 4527 kb)

Movie S2 (AVI 4527 kb)

Movie S3 1 (AVI 4527 kb)

Movie S4 (AVI 4527 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, W.W., Li, T.C., Rubakhin, S.S. et al. Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons. Cel. Mol. Bioeng. 5, 155–164 (2012). https://doi.org/10.1007/s12195-012-0223-1

Download citation

Keywords

  • Cell mechanics
  • Subcellular
  • Live-imaging
  • Vesicle tracking
  • Drosophila
  • Aplysia