Skip to main content

Advertisement

Log in

Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The process of sprouting angiogenesis involves activating endothelial cells (ECs) in a quiescent monolayer of an existing vessel to degrade and migrate into the underlying matrix to form new blood vessels. While the roles of biochemical factors in angiogenic sprouting have been well characterized, the roles of fluid forces have received much less attention. This review summarizes results that support a role for wall shear stress in post-capillary venules as a mechanical factor capable of synergizing with biochemical factors to stimulate pro-angiogenic signaling in ECs and promote sprout formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Anand-Apte, B., M. S. Pepper, E. Voest, R. Montesano, B. Olsen, G. Murphy, S. S. Apte, and B. Zetter. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Investig. Ophthalmol. Vis. Sci. 38:817–823, 1997.

    Google Scholar 

  2. Aoki, M., H. Jiang, and P. K. Vogt. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc. Natl. Acad. Sci. USA 101:13613–13617, 2004.

    Article  Google Scholar 

  3. Augustin-Voss, H. G., and B. U. Pauli. Quantitative analysis of autocrine-regulated, matrix-induced, and tumor cell-stimulated endothelial cell migration using a silicon template compartmentalization technique. Exp. Cell Res. 198:221–227, 1992.

    Article  Google Scholar 

  4. Balligand, J. L., O. Feron, and C. Dessy. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev. 89:481–534, 2009.

    Article  Google Scholar 

  5. Bayless, K. J., and G. E. Davis. Sphingosine-1-phosphate markedly induces matrix metalloproteinase and integrin-dependent human endothelial cell invasion and lumen formation in three-dimensional collagen and fibrin matrices. Biochem. Biophys. Res. Commun. 312:903–913, 2003.

    Article  Google Scholar 

  6. Bayless, K. J., H. I. Kwak, and S. C. Su. Investigating endothelial invasion and sprouting behavior in three-dimensional collagen matrices. Nat. Protoc. 4:1888–1898, 2009.

    Article  Google Scholar 

  7. Bayless, K. J., R. Salazar, and G. E. Davis. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am. J. Pathol. 156:1673–1683, 2000.

    Article  Google Scholar 

  8. Benedito, R., C. Roca, I. Sorensen, S. Adams, A. Gossler, M. Fruttiger, and R. H. Adams. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135, 2009.

    Article  Google Scholar 

  9. Bentley, K., G. Mariggi, H. Gerhardt, and P. A. Bates. Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput. Biol. 5:e1000549, 2009.

    Article  Google Scholar 

  10. Biggs, W. H., J. Meisenhelder, T. Hunter, W. K. Cavenee, and K. C. Arden. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96:7421–7426, 1999.

    Article  Google Scholar 

  11. Bikfalvi, A., E. M. Cramer, D. Tenza, and G. Tobelem. Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol. Cell 72:275–278, 1991.

    Article  Google Scholar 

  12. Black, R. A., C. T. Rauch, C. J. Kozlosky, J. J. Peschon, J. L. Slack, M. F. Wolfson, B. J. Castner, K. L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K. A. Schooley, M. Gerhart, R. Davis, J. N. Fitzner, R. S. Johnson, R. J. Paxton, C. J. March, and D. P. Cerretti. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733, 1997.

    Article  Google Scholar 

  13. Blobel, C. P. Remarkable roles of proteolysis on and beyond the cell surface. Curr. Opin. Cell Biol. 12:606–612, 2000.

    Article  Google Scholar 

  14. Blobel, C. P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6:32–43, 2005.

    Article  Google Scholar 

  15. Brown, H. M., K. R. Dunning, R. L. Robker, M. Pritchard, and D. L. Russell. Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Dev. Biol. 300:699–709, 2006.

    Article  Google Scholar 

  16. Brunet, A., A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, and M. E. Greenberg. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868, 1999.

    Article  Google Scholar 

  17. Chalfant, C. E., and S. Spiegel. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118:4605–4612, 2005.

    Article  Google Scholar 

  18. Chaplain, M. A., S. R. McDougall, and A. R. Anderson. Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8:233–257, 2006.

    Article  Google Scholar 

  19. Chlench, S., N. Mecha Disassa, M. Hohberg, C. Hoffmann, T. Pohlkamp, G. Beyer, M. Bongrazio, L. Da Silva-Azevedo, O. Baum, A. R. Pries, and A. Zakrzewicz. Regulation of Foxo-1 and the angiopoietin-2/Tie2 system by shear stress. FEBS Lett. 581:673–680, 2007.

    Article  Google Scholar 

  20. Chun, T. H., F. Sabeh, I. Ota, H. Murphy, K. T. McDonagh, K. Holmbeck, H. Birkedal-Hansen, E. D. Allen, and S. J. Weiss. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell Biol. 167:757–767, 2004.

    Article  Google Scholar 

  21. Clark, E. R., W. J. Hitschler, H. T. Kirby-Smith, R. O. Rex, and J. H. Smith. General observations on the ingrowth of new blood vessels into standardized chambers in the rabbit’s ear, and the subsequent changes in the newly grown vessels over a period of months. Anat. Rec. 50:129–168, 1931.

    Article  Google Scholar 

  22. Cullen, J. P., S. Sayeed, R. S. Sawai, N. G. Theodorakis, P. A. Cahill, J. V. Sitzmann, and E. M. Redmond. Pulsatile flow-induced angiogenesis: role of G(i) subunits. Arterioscler. Thromb. Vasc. Biol. 22:1610–1616, 2002.

    Article  Google Scholar 

  23. Cummins, P. M., N. von Offenberg Sweeney, M. T. Killeen, Y. A. Birney, E. M. Redmond, and P. A. Cahill. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am. J. Physiol. Heart Circ. Physiol. 292:H28–H42, 2007.

    Article  Google Scholar 

  24. Daly, C., V. Wong, E. Burova, Y. Wei, S. Zabski, J. Griffiths, K. M. Lai, H. C. Lin, E. Ioffe, G. D. Yancopoulos, and J. S. Rudge. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev. 18:1060–1071, 2004.

    Article  Google Scholar 

  25. Dansen, T. B., and B. M. Burgering. Unravelling the tumor-suppressive functions of FOXO proteins. Trends Cell Biol. 18:421–429, 2008.

    Article  Google Scholar 

  26. Davis, G. E., and C. W. Camarillo. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224:39–51, 1996.

    Article  Google Scholar 

  27. Davis, G. E., A. N. Stratman, A. Sacharidou, and W. Koh. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int. Rev. Cell Mol. Biol. 288:101–165, 2011.

    Google Scholar 

  28. Dimmeler, S., B. Assmus, C. Hermann, J. Haendeler, and A. M. Zeiher. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ. Res. 83:334–341, 1998.

    Google Scholar 

  29. Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605, 1999.

    Article  Google Scholar 

  30. Dimmeler, S., and A. M. Zeiher. Akt takes center stage in angiogenesis signaling. Circ. Res. 86:4–5, 2000.

    Google Scholar 

  31. Donovan, D., N. J. Brown, E. T. Bishop, and C. E. Lewis. Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121, 2001.

    Article  Google Scholar 

  32. Eilken, H. M., and R. H. Adams. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22:617–625, 2010.

    Article  Google Scholar 

  33. Emonard, H., A. Calle, J. A. Grimaud, S. Peyrol, V. Castronovo, A. Noel, C. M. Lapiere, H. K. Kleinman, and J. M. Foidart. Interactions between fibroblasts and a reconstituted basement membrane matrix. J. Invest. Dermatol. 89:156–163, 1987.

    Article  Google Scholar 

  34. Evans, J. P. Fertilin beta and other ADAMs as integrin ligands: insights into cell adhesion and fertilization. Bioessays 23:628–639, 2001.

    Article  Google Scholar 

  35. Fleming, I., B. Fisslthaler, M. Dixit, and R. Busse. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J. Cell Sci. 118:4103–4111, 2005.

    Article  Google Scholar 

  36. Folkman, J. Angiogenesis. Annu. Rev. Med. 57:1–18, 2006.

    Article  Google Scholar 

  37. Furuyama, T., K. Kitayama, Y. Shimoda, M. Ogawa, K. Sone, K. Yoshida-Araki, H. Hisatsune, S. Nishikawa, K. Nakayama, K. Ikeda, N. Motoyama, and N. Mori. Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J. Biol. Chem. 279:34741–34749, 2004.

    Article  Google Scholar 

  38. Gloe, T., H. Y. Sohn, G. A. Meininger, and U. Pohl. Shear stress-induced release of basic fibroblast growth factor from endothelial cells is mediated by matrix interaction via integrin alpha(v)beta3. J. Biol. Chem. 277:23453–23458, 2002.

    Article  Google Scholar 

  39. Goettsch, W., H. G. Augustin, and H. Morawietz. Down-regulation of endothelial ephrinB2 expression by laminar shear stress. Endothelium 11:259–265, 2004.

    Article  Google Scholar 

  40. Goettsch, W., C. Gryczka, T. Korff, E. Ernst, C. Goettsch, J. Seebach, H. J. Schnittler, H. G. Augustin, and H. Morawietz. Flow-dependent regulation of angiopoietin-2. J. Cell. Physiol. 214:491–503, 2008.

    Article  Google Scholar 

  41. Gonzalez, E., R. Kou, and T. Michel. Rac1 modulates sphingosine 1-phosphate-mediated activation of phosphoinositide 3-kinase/Akt signaling pathways in vascular endothelial cells. J. Biol. Chem. 281:3210–3216, 2006.

    Article  Google Scholar 

  42. Gordan, J. D., and M. C. Simon. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev. 17:71–77, 2007.

    Article  Google Scholar 

  43. Guaiquil, V., S. Swendeman, T. Yoshida, S. Chavala, P. A. Campochiaro, and C. P. Blobel. ADAM9 is involved in pathological retinal neovascularization. Mol. Cell. Biol. 29:2694–2703, 2009.

    Article  Google Scholar 

  44. Guaiquil, V. H., S. Swendeman, W. Zhou, P. Guaiquil, G. Weskamp, J. W. Bartsch, and C. P. Blobel. ADAM8 is a negative regulator of retinal neovascularization and of the growth of heterotopically injected tumor cells in mice. J. Mol. Med. 88:497–505, 2010.

    Article  Google Scholar 

  45. Hartmann, D., B. de Strooper, L. Serneels, K. Craessaerts, A. Herreman, W. Annaert, L. Umans, T. Lubke, A. Lena Illert, K. von Figura, and P. Saftig. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11:2615–2624, 2002.

    Article  Google Scholar 

  46. Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko, and S. J. Weiss. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95:365–377, 1998.

    Article  Google Scholar 

  47. Hla, T. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15:513–520, 2004.

    Article  Google Scholar 

  48. Hohberg, M., J. Knochel, C. J. Hoffmann, S. Chlench, W. Wunderlich, A. Alter, J. Maroski, B. J. Vorderwulbecke, L. Da Silva-Azevedo, R. Knudsen, R. Lehmann, K. Fiedorowicz, M. Bongrazio, B. Nitsche, M. Hoepfner, B. Styp-Rekowska, A. R. Pries, and A. Zakrzewicz. Expression of ADAMTS1 in endothelial cells is induced by shear stress and suppressed in sprouting capillaries. J. Cell. Physiol. 226:350–361, 2011.

    Article  Google Scholar 

  49. Horiuchi, K., G. Weskamp, L. Lum, H. P. Hammes, H. Cai, T. A. Brodie, T. Ludwig, R. Chiusaroli, R. Baron, K. T. Preissner, K. Manova, and C. P. Blobel. Potential role for ADAM15 in pathological neovascularization in mice. Mol. Cell. Biol. 23:5614–5624, 2003.

    Article  Google Scholar 

  50. Hu, Y. L., and S. Chien. Effects of shear stress on protein kinase C distribution in endothelial cells. J. Histochem. Cytochem. 45:237–249, 1997.

    Article  Google Scholar 

  51. Ichioka, S., M. Shibata, K. Kosaki, Y. Sato, K. Harii, and A. Kamiya. Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J. Surg. Res. 72:29–35, 1997.

    Article  Google Scholar 

  52. Igarashi, J., S. G. Bernier, and T. Michel. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. Differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J. Biol. Chem. 276:12420–12426, 2001.

    Article  Google Scholar 

  53. Kamei, M., W. B. Saunders, K. J. Bayless, L. Dye, G. E. Davis, and B. M. Weinstein. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442:453–456, 2006.

    Article  Google Scholar 

  54. Kang, H., K. J. Bayless, and R. Kaunas. Fluid shear stress modulates endothelial cell invasion into three-dimensional collagen matrices. Am. J. Physiol. Heart Circ. Physiol. 295:H2087–H2097, 2008.

    Article  Google Scholar 

  55. Kheradmand, F., and Z. Werb. Shedding light on sheddases: role in growth and development. Bioessays 24:8–12, 2002.

    Article  Google Scholar 

  56. Kim, M. B., and I. H. Sarelius. Distributions of wall shear stress in venular convergences of mouse cremaster muscle. Microcirculation 10:167–178, 2003.

    Google Scholar 

  57. Korff, T., and H. G. Augustin. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143:1341–1352, 1998.

    Article  Google Scholar 

  58. Koutsiaris, A. G., S. V. Tachmitzi, N. Batis, M. G. Kotoula, C. H. Karabatsas, E. Tsironi, and D. Z. Chatzoulis. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44:375–386, 2007.

    Google Scholar 

  59. Krishnan, L., C. J. Underwood, S. Maas, B. J. Ellis, T. C. Kode, J. B. Hoying, and J. A. Weiss. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc. Res. 78:324–332, 2008.

    Article  Google Scholar 

  60. Kureishi, Y., Z. Luo, I. Shiojima, A. Bialik, D. Fulton, D. J. Lefer, W. C. Sessa, and K. Walsh. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 6:1004–1010, 2000.

    Article  Google Scholar 

  61. Kwak, H. I., E. A. Mendoza, and K. J. Bayless. ADAM17 co-purifies with TIMP-3 and modulates endothelial invasion responses in three-dimensional collagen matrices. Matrix Biol. 28:470–479, 2009.

    Article  Google Scholar 

  62. Lafleur, M. A., M. M. Handsley, and D. R. Edwards. Metalloproteinases and their inhibitors in angiogenesis. Expert Rev. Mol. Med. 5:1–39, 2003.

    Article  Google Scholar 

  63. Lee, M. J., M. Evans, and T. Hla. The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J. Biol. Chem. 271:11272–11279, 1996.

    Article  Google Scholar 

  64. Lee, N. V., M. Sato, D. S. Annis, J. A. Loo, L. Wu, D. F. Mosher, and M. L. Iruela-Arispe. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J. 25:5270–5283, 2006.

    Article  Google Scholar 

  65. Lucitti, J. L., E. A. Jones, C. Huang, J. Chen, S. E. Fraser, and M. E. Dickinson. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134:3317–3326, 2007.

    Article  Google Scholar 

  66. Machado, M. J., M. G. Watson, A. H. Devlin, M. A. Chaplain, S. R. McDougall, and C. A. Mitchell. Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation 18:183–197, 2011.

    Article  Google Scholar 

  67. Maisonpierre, P. C., C. Suri, P. F. Jones, S. Bartunkova, S. J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T. H. Aldrich, N. Papadopoulos, T. J. Daly, S. Davis, T. N. Sato, and G. D. Yancopoulos. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60, 1997.

    Article  Google Scholar 

  68. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  Google Scholar 

  69. Masumura, T., K. Yamamoto, N. Shimizu, S. Obi, and J. Ando. Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler. Thromb. Vasc. Biol. 29:2125–2131, 2009.

    Article  Google Scholar 

  70. Milkiewicz, M., J. L. Doyle, T. Fudalewski, E. Ispanovic, M. Aghasi, and T. L. Haas. HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J. Physiol. 583:753–766, 2007.

    Article  Google Scholar 

  71. Milkiewicz, M., C. Kelland, S. Colgan, and T. L. Haas. Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J. Cell. Physiol. 208:229–237, 2006.

    Article  Google Scholar 

  72. Milkiewicz, M., E. Roudier, J. L. Doyle, A. Trifonova, O. Birot, and T. L. Haas. Identification of a mechanism underlying regulation of the anti-angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle. Am. J. Pathol. 178:935–944, 2011.

    Article  Google Scholar 

  73. Mittaz, L., D. L. Russell, T. Wilson, M. Brasted, J. Tkalcevic, L. A. Salamonsen, P. J. Hertzog, and M. A. Pritchard. Adamts-1 is essential for the development and function of the urogenital system. Biol. Reprod. 70:1096–1105, 2004.

    Article  Google Scholar 

  74. Morales-Ruiz, M., M. J. Lee, S. Zollner, J. P. Gratton, R. Scotland, I. Shiojima, K. Walsh, T. Hla, and W. C. Sessa. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J. Biol. Chem. 276:19672–19677, 2001.

    Article  Google Scholar 

  75. Nagase, H., and J. F. Woessner, Jr. Matrix metalloproteinases. J. Biol. Chem. 274:21491–21494, 1999.

    Article  Google Scholar 

  76. Nakatsu, M. N., and C. C. Hughes. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443:65–82, 2008.

    Article  Google Scholar 

  77. Nasu, R., H. Kimura, K. Akagi, T. Murata, and Y. Tanaka. Blood flow influences vascular growth during tumour angiogenesis. Br. J. Cancer 79:780–786, 1999.

    Article  Google Scholar 

  78. Nehls, V., and D. Drenckhahn. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc. Res. 50:311–322, 1995.

    Article  Google Scholar 

  79. Ng, C. P., C. L. Helm, and M. A. Swartz. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68:258–264, 2004.

    Article  Google Scholar 

  80. Owen, M. R., T. Alarcon, P. K. Maini, and H. M. Byrne. Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol. 58:689–721, 2009.

    Article  MathSciNet  Google Scholar 

  81. Oyama, O., N. Sugimoto, X. Qi, N. Takuwa, K. Mizugishi, J. Koizumi, and Y. Takuwa. The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc. Res. 78:301–307, 2008.

    Article  Google Scholar 

  82. Peschon, J. J., J. L. Slack, P. Reddy, K. L. Stocking, S. W. Sunnarborg, D. C. Lee, W. E. Russell, B. J. Castner, R. S. Johnson, J. N. Fitzner, R. W. Boyce, N. Nelson, C. J. Kozlosky, M. F. Wolfson, C. T. Rauch, D. P. Cerretti, R. J. Paxton, C. J. March, and R. A. Black. An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284, 1998.

    Article  Google Scholar 

  83. Potente, M., C. Urbich, K. Sasaki, W. K. Hofmann, C. Heeschen, A. Aicher, R. Kollipara, R. A. DePinho, A. M. Zeiher, and S. Dimmeler. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115:2382–2392, 2005.

    Article  Google Scholar 

  84. Rehn, A. P., M. A. Birch, E. Karlstrom, M. Wendel, and T. Lind. ADAMTS-1 increases the three-dimensional growth of osteoblasts through type I collagen processing. Bone 41:231–238, 2007.

    Article  Google Scholar 

  85. Richards, J. S., I. Hernandez-Gonzalez, I. Gonzalez-Robayna, E. Teuling, Y. Lo, D. Boerboom, A. E. Falender, K. H. Doyle, R. G. LeBaron, V. Thompson, and J. D. Sandy. Regulated expression of ADAMTS family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation. Biol. Reprod. 72:1241–1255, 2005.

    Article  Google Scholar 

  86. Rodriguez-Manzaneque, J. C., J. Westling, S. N. Thai, A. Luque, V. Knauper, G. Murphy, J. D. Sandy, and M. L. Iruela-Arispe. ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 293:501–508, 2002.

    Article  Google Scholar 

  87. Sacharidou, A., W. Koh, A. N. Stratman, A. M. Mayo, K. E. Fisher, and G. E. Davis. Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 115:5259–5269, 2010.

    Article  Google Scholar 

  88. Sainson, R. C., J. Aoto, M. N. Nakatsu, M. Holderfield, E. Conn, E. Koller, and C. C. Hughes. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 19:1027–1029, 2005.

    Google Scholar 

  89. Salih, D. A., and A. Brunet. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr. Opin. Cell Biol. 20:126–136, 2008.

    Article  Google Scholar 

  90. Saunders, W. B., B. L. Bohnsack, J. B. Faske, N. J. Anthis, K. J. Bayless, K. K. Hirschi, and G. E. Davis. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175:179–191, 2006.

    Article  Google Scholar 

  91. Sawamiphak, S., S. Seidel, C. L. Essmann, G. A. Wilkinson, M. E. Pitulescu, T. Acker, and A. Acker-Palmer. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465:487–491, 2010.

    Article  Google Scholar 

  92. Shin, D., G. Garcia-Cardena, S. Hayashi, S. Gerety, T. Asahara, G. Stavrakis, J. Isner, J. Folkman, M. A. Gimbrone, Jr., and D. J. Anderson. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev. Biol. 230:139–150, 2001.

    Article  Google Scholar 

  93. Shindo, T., H. Kurihara, K. Kuno, H. Yokoyama, T. Wada, Y. Kurihara, T. Imai, Y. Wang, M. Ogata, H. Nishimatsu, N. Moriyama, Y. Oh-hashi, H. Morita, T. Ishikawa, R. Nagai, Y. Yazaki, and K. Matsushima. ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J. Clin. Invest. 105:1345–1352, 2000.

    Article  Google Scholar 

  94. Shiojima, I., and K. Walsh. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90:1243–1250, 2002.

    Article  Google Scholar 

  95. Shiomi, T., D. J. Tschumperlin, J. A. Park, S. W. Sunnarborg, K. Horiuchi, C. P. Blobel, and J. M. Drazen. TACE/ADAM17 mediates mechanotransduction in murine tracheal epithelial cells. Am. J. Respir. Cell Mol. Biol. 45(2):376–385, 2011.

    Article  Google Scholar 

  96. Somanath, P. R., J. Chen, and T. V. Byzova. Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing. Angiogenesis 11:277–288, 2008.

    Article  Google Scholar 

  97. Su, S. C., E. A. Mendoza, H. I. Kwak, and K. J. Bayless. Molecular profile of endothelial invasion of three-dimensional collagen matrices: insights into angiogenic sprout induction in wound healing. Am. J. Physiol. Cell Physiol. 295:C1215–C1229, 2008.

    Article  Google Scholar 

  98. Sultan, S., M. Gosling, H. Nagase, and J. T. Powell. Shear stress-induced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium. FEBS Lett. 564:161–165, 2004.

    Article  Google Scholar 

  99. Sun, H. W., C. J. Li, H. Q. Chen, H. L. Lin, H. X. Lv, Y. Zhang, and M. Zhang. Involvement of integrins, MAPK, and NF-kappaB in regulation of the shear stress-induced MMP-9 expression in endothelial cells. Biochem. Biophys. Res. Commun. 353:152–158, 2007.

    Article  Google Scholar 

  100. Suri, C., P. F. Jones, S. Patan, S. Bartunkova, P. C. Maisonpierre, S. Davis, T. N. Sato, and G. D. Yancopoulos. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180, 1996.

    Article  Google Scholar 

  101. Sympson, C. J., R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb. Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125:681–693, 1994.

    Article  Google Scholar 

  102. Talhouk, R. S., M. J. Bissell, and Z. Werb. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282, 1992.

    Article  Google Scholar 

  103. Tonnesen, M. G., X. Feng, and R. A. Clark. Angiogenesis in wound healing. J. Investig. Dermatol. Symp. Proc. 5:40–46, 2000.

    Article  Google Scholar 

  104. Tressel, S. L., R. P. Huang, N. Tomsen, and H. Jo. Laminar shear inhibits tubule formation and migration of endothelial cells by an angiopoietin-2 dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 27:2150–2156, 2007.

    Article  Google Scholar 

  105. Ueda, A., M. Koga, M. Ikeda, S. Kudo, and K. Tanishita. Effect of shear stress on microvessel network formation of endothelial cells with in vitro three-dimensional model. Am. J. Physiol. Heart Circ. Physiol. 287:H994–H1002, 2004.

    Article  Google Scholar 

  106. Vazquez, F., G. Hastings, M. A. Ortega, T. F. Lane, S. Oikemus, M. Lombardo, and M. L. Iruela-Arispe. METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274:23349–23357, 1999.

    Article  Google Scholar 

  107. Vernon, R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, and E. H. Sage. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547, 1992.

    Google Scholar 

  108. Vickerman, V., J. Blundo, S. Chung, and R. Kamm. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8:1468–1477, 2008.

    Article  Google Scholar 

  109. Vu, T. H., J. M. Shipley, G. Bergers, J. E. Berger, J. A. Helms, D. Hanahan, S. D. Shapiro, R. M. Senior, and Z. Werb. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422, 1998.

    Article  Google Scholar 

  110. Wang, X. L., A. Fu, S. Raghavakaimal, and H. C. Lee. Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 7:588–596, 2007.

    Article  Google Scholar 

  111. Wang, Y., M. Nakayama, M. E. Pitulescu, T. S. Schmidt, M. L. Bochenek, A. Sakakibara, S. Adams, A. Davy, U. Deutsch, U. Luthi, A. Barberis, L. E. Benjamin, T. Makinen, C. D. Nobes, and R. H. Adams. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:483–486, 2010.

    Article  Google Scholar 

  112. Werb, Z., C. J. Sympson, C. M. Alexander, N. Thomasset, L. R. Lund, A. MacAuley, J. Ashkenas, and M. J. Bissell. Extracellular matrix remodeling and the regulation of epithelial–stromal interactions during differentiation and involution. Kidney Int. Suppl. 54:S68–S74, 1996.

    Google Scholar 

  113. Weskamp, G., K. Mendelson, S. Swendeman, S. Le Gall, Y. Ma, S. Lyman, A. Hinoki, S. Eguchi, V. Guaiquil, K. Horiuchi, and C. P. Blobel. Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ. Res. 106:932–940, 2010.

    Article  Google Scholar 

  114. Wu, H., G. M. Riha, H. Yang, M. Li, Q. Yao, and C. Chen. Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells. J. Surg. Res. 126:193–198, 2005.

    Article  Google Scholar 

  115. Yamane, T., M. Mitsumata, N. Yamaguchi, T. Nakazawa, K. Mochizuki, T. Kondo, T. Kawasaki, S. Murata, Y. Yoshida, and R. Katoh. Laminar high shear stress up-regulates type IV collagen synthesis and down-regulates MMP-2 secretion in endothelium. A quantitative analysis. Cell Tissue Res. 340:471–479, 2010.

    Article  Google Scholar 

  116. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.

    Article  Google Scholar 

  117. Zhou, A., S. Egginton, O. Hudlicka, and M. D. Brown. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res. 293:293–303, 1998.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by American Heart Association Scientist Development Grant #0730238N (RRK) and NIH R01HL09576 (KJB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Kaunas or Kayla J. Bayless.

Additional information

Associate Editor John Shyy and Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaunas, R., Kang, H. & Bayless, K.J. Synergistic Regulation of Angiogenic Sprouting by Biochemical Factors and Wall Shear Stress. Cel. Mol. Bioeng. 4, 547–559 (2011). https://doi.org/10.1007/s12195-011-0208-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0208-5

Keywords

Navigation