Skip to main content

Advertisement

Log in

Optimal Temperature for Hypothermia Intervention in Mouse Model of Skeletal Muscle Ischemia Reperfusion Injury

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Ischemia–reperfusion (IR) in skeletal muscles is a prevalent problem associated with many diseases and injuries. It can result in loss of muscle mass and function, and in severe cases, amputation or even death. Hypothermia has been shown to be effective in protecting muscles from the IR injury, but the minimal effective hypothermic temperature has not been clearly defined. This is a problem because excessively low temperatures may have undesired pathophysiological consequences. Thus, in this study, we performed a series of experiments aimed at identifying the minimal hypothermic temperature that is needed for protection against IR injury. In the experiment, a pressure inflating cuff and hypothermia cuff were designed to provide more controllable ischemia and hypothermia. Our results indicate that a hypothermic temperature of 17 °C can completely protect skeletal muscle contractile function and morphology from the damaging effects of 1-h ischemia. Thus, hypothermic intervention may reach the maximum protective effects in the deep hypothermia range near 17 °C for skeletal muscles against 1-h IR injuries. The results suggest that hypothermic temperatures below 17 °C may not offer further benefits while risking pathophysiological complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alam, H. B., et al. Profound hypothermia is superior to ultraprofound hypothermia in improving survival in a swine model of lethal injuries. Surgery 140(2):307–314, 2006.

    Article  Google Scholar 

  2. Awerbuck, D., et al. Skeletal muscle form and function after 4 hr ischemia-hypothermia. J. Surg. Res. 57(4):480–486, 1994.

    Article  Google Scholar 

  3. Barker, J. U., et al. Addition of nitric oxide donor S-nitroso-N-acetylcysteine to selective iNOS inhibitor 1400 W further improves contractile function in reperfused skeletal muscle. Microsurgery 25(4):338–345, 2005.

    Article  Google Scholar 

  4. Bastiaanse, J., et al. Effect of hypothermia and HTK on the microcirculation in the rat cremaster muscle after ischaemia. Clin. Sci. (Lond) 109(1):117–123, 2005.

    Article  Google Scholar 

  5. Baxter, B., T. H. Gillingwater, and S. H. Parson. Rapid loss of motor nerve terminals following hypoxia-reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration. J. Anat. 212(6):827–835, 2008.

    Article  Google Scholar 

  6. Bolognesi, M. P., et al. Protective effect of hypothermia on contractile force in skeletal muscle. J. Orthop. Res. 14(3):390–395, 1996.

    Article  Google Scholar 

  7. Bonheur, J. A., et al. A noninvasive murine model of hind limb ischemia-reperfusion injury. J. Surg. Res. 116(1):55–63, 2004.

    Article  Google Scholar 

  8. Burton, G. W. Metabolic acidosis during profound hypothermia. Anaesthesia 19:365–375, 1964.

    Article  Google Scholar 

  9. Chan, R. K., et al. IgM binding to injured tissue precedes complement activation during skeletal muscle ischemia-reperfusion. J. Surg. Res. 122(1):29–35, 2004.

    Article  Google Scholar 

  10. Crawford, R. S., et al. A novel model of acute murine hindlimb ischemia. Am. J. Physiol. Heart Circ. Physiol. 292(2):H830–H837, 2007.

    Article  Google Scholar 

  11. Doufas, A. G., and D. I. Sessler. Physiology and clinical relevance of induced hypothermia. Neurocrit. Care 1(4):489–498, 2004.

    Article  Google Scholar 

  12. Filippi, L., et al. Phenobarbital for neonatal seizures in hypoxic ischemic encephalopathy: a pharmacokinetic study during whole body hypothermia. Epilepsia 52(4):794–801, 2011.

    Google Scholar 

  13. Fish, J. S., et al. The effect of hypothermia on changes in isometric contractile function in skeletal muscle after tourniquet ischemia. J. Hand. Surg. [Am.] 18(2):210–217, 1993.

    Article  Google Scholar 

  14. Guluma, K. Z., et al. A trial of therapeutic hypothermia via endovascular approach in awake patients with acute ischemic stroke: methodology. Acad. Emerg. Med. 13(8):820–827, 2006.

    Article  Google Scholar 

  15. Gurke, L., et al. Function of fast- and slow-twitch rat skeletal muscle following ischemia and reperfusion at different intramuscular temperatures. Eur. Surg. Res. 32(3):135–141, 2000.

    Article  Google Scholar 

  16. Hess, M. L., and N. H. Manson. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J. Mol. Cell Cardiol. 16(11):969–985, 1984.

    Article  Google Scholar 

  17. Hornberger, T. A., and S. Chien. Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J. Cell. Biochem. 97(6):1207–1216, 2006.

    Article  Google Scholar 

  18. Hornberger, T. A., et al. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J. Appl. Physiol. 98(4):1562–1566, 2005.

    Article  Google Scholar 

  19. Khalil, A. A., F. A. Aziz, and J. C. Hall. Reperfusion injury. Plast. Reconstr. Surg. 117(3):1024–1033, 2006.

    Article  Google Scholar 

  20. Lefer, A. M., A. S. Weyrich, and M. Buerke. Role of selectins, a new family of adhesion molecules, in ischaemia-reperfusion injury. Cardiovasc. Res. 28(3):289–294, 1994.

    Article  Google Scholar 

  21. Lehr, H. A., et al. Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster. J. Clin. Invest. 87(6):2036–2041, 1991.

    Article  Google Scholar 

  22. Liu, L., and M. A. Yenari. Therapeutic hypothermia: neuroprotective mechanisms. Front. Biosci. 12:816–825, 2007.

    Article  Google Scholar 

  23. Mohler, L. R., et al. Effects of tourniquet compression on neuromuscular function. Clin. Orthop. Relat. Res. 359:213–220, 1999.

    Google Scholar 

  24. Ning, X. H., and S. H. Chen. Mild hypothermic cross adaptation resists hypoxic injury in hearts: a brief review. Chin. J. Physiol. 49(5):213–222, 2006.

    MathSciNet  Google Scholar 

  25. Park, J. W., et al. Inhibition of iNOS attenuates skeletal muscle reperfusion injury in extracellular superoxide dismutase knockout mice. Microsurgery 25(8):606–613, 2005.

    Google Scholar 

  26. Skjeldal, S., et al. Protective effect of low-grade hypothermia in experimental skeletal muscle ischemia. Eur. Surg. Res. 24(4):197–203, 1992.

    Article  Google Scholar 

  27. Smith, G. W., C. J. McArthur, and I. J. Simpson. Circulating immune complexes in myocardial infarction. J. Clin. Lab. Immunol. 12(4):197–199, 1983.

    Google Scholar 

  28. Stotland, M. A., and C. L. Kerrigan. E- and L-selectin adhesion molecules in musculocutaneous flap reperfusion injury. Plast. Reconstr. Surg. 99(7):2010–2020, 1997.

    Article  Google Scholar 

  29. van den Broek, M. P., et al. Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin. Pharmacokinet. 49(5):277–294, 2010.

    Google Scholar 

  30. Wright, J. G., M. Belkin, and R. W. Hobson, II. Hypothermia and controlled reperfusion: two non-pharmacologic methods which diminish ischemia-reperfusion injury in skeletal muscle. Microcirc. Endoth. Lym. 5(3–5):315–334, 1989.

    Google Scholar 

  31. Wright, J. G., et al. Regional hypothermia protects against ischemia-reperfusion injury in isolated canine gracilis muscle. J. Trauma 28(7):1026–1031, 1988.

    Article  Google Scholar 

  32. Zhang, J. X., and M. B. Wolf. Effect of cold on ischemia–reperfusion-induced microvascular permeability increase in cat skeletal muscle. Cryobiology 31(1):94–100, 1994.

    Article  Google Scholar 

  33. Zhao, H., G. K. Steinberg, and R. M. Sapolsky. General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J. Cereb. Blood Flow. Metab. 27:1879–1894, 2007.

    Google Scholar 

Download references

Acknowledgments

This article is a part of the celebration dedicated to Dr. Shu Chien’s 80th birthday, for his leadership, contribution and dedication to the field of biomechanics and bioengineering. It is his guidance, mentorship and continuous support that made this work possible. Thanks to Dr. Niren Angle for initiating the collaboration in ischemia–reperfusion with a different focus that opened the door to this study. We would also like to express our gratitude to Dr. Alan Hargens, Orthopaedic Surgery, UCSD for supplying the laser Doppler flow meter. We are grateful to Kersi Pestonjamasp, Moores Cancer Center, UCSD for the valuable help in microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayu Teng.

Additional information

Associate Editor John Shyy & Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, D., Hornberger, T.A. Optimal Temperature for Hypothermia Intervention in Mouse Model of Skeletal Muscle Ischemia Reperfusion Injury. Cel. Mol. Bioeng. 4, 717–723 (2011). https://doi.org/10.1007/s12195-011-0206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0206-7

Keywords

Navigation