Skip to main content
Log in

Mechanobiology of Erythrocytes from Adult Mice Homozygous for a Targeted Disruption of the E-Tmod Gene at Exon 1

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The erythrocyte membrane skeleton is a protein network that provides deformability and stability to erythrocytes. Defects in the network lead to dysfunction and diseases. Erythrocyte tropomodulin (E-Tmod) of 41 kDa is an actin-capping protein at the slow-growing end, and together with tropomyosin 5 or 5b, has been proposed to form a “molecular ruler” dictating the length of actin protofilament of 37 nm in the network. We have previously created an E-Tmod knockout mouse model by targeted disruption of exon 1, which contains the AUG initiation codon. In this study, we showed that the embryonic lethality of the E-Tmod −/− mice was rescued by breeding with transgenic mice overexpressing E-Tmod in the heart and investigated the biomechanics of erythrocytes and its network topology. Western blot analysis revealed that a cytosolic E-Tmod29 isoform, which lacks the N-terminal F-actin binding domain, remains intact in the E-Tmod −/− erythrocytes, but is highly dimerized by oxidation. Micropipette aspiration indicated a higher elastic shear modulus and ektacytometry showed a lower average integrated elongation index. E-Tmod −/− mice had more microcytic erythrocytes with more compacted network on transmission electron microscopy. These results demonstrated the importance of E-Tmod41, the membrane-bound long isoform, in the network organization and mechanobiology of erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

E-Tmod:

Erythrocyte tropomodulin

TM:

Tropomyosin

TOT:

Tropomodulin overexpressing transgenic

μRBC:

Microcytic RBC or erythrocyte

JC:

Junctional complex

SC:

Suspension complex

WBC:

White blood cell

MCV:

Mean cell volume

References

  1. Babcock, G. G., and V. M. Fowler. Isoform-specific interaction of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J. Biol. Chem. 269:27510–27518, 1994.

    Google Scholar 

  2. Bennett, V., and P. J. Stenbuck. Human erythrocyte ankyrin. Purification and properties. J. Biol. Chem. 255:2540, 1980.

    Google Scholar 

  3. Byers, T. J., and D. Branton. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA 82:6153–6157, 1985.

    Article  Google Scholar 

  4. Chien, S., K.-L. P. Sung, R. Skalak, S. Usami, and A. Tozeren. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys. J. 24:463–487, 1978.

    Article  Google Scholar 

  5. Chu, X., D. Thompson, L. J. Yee, and L. A. Sung. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments. Gene 256:271–281, 2000.

    Article  Google Scholar 

  6. Chu, X., J. Chen, M. C. Reedy, C. Vera, K. L. Sung, and L. A. Sung. E-Tmod capping of actin filaments at the slow-growing end is required to establish mouse embryonic circulation. Am. J. Physiol. Heart Circ. Physiol. 284:H1827–H1838, 2003.

    Google Scholar 

  7. Clark, M. R., N. Mohandas, and S. B. Shohet. Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance. Blood 61:899–910, 1983.

    Google Scholar 

  8. Davison, E., and W. Colquhoun. Ultrathin formvar support films for transmission electron-microscopy. J. Electron Microsc. Tech. 2:35–43, 1985.

    Article  Google Scholar 

  9. Discher, D. E., N. Mohandas, and E. A. Evans. Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035, 1994.

    Article  Google Scholar 

  10. Evans, E. A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys. J. 13:941–954, 1973.

    Article  Google Scholar 

  11. Fowler, V. M. Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J. Biol. Chem. 262:12792–12800, 1987.

    Google Scholar 

  12. Fritz-Six, K. L., P. R. Cox, R. S. Fischer, B. Xu, C. C. Gregorio, H. Y. Zoghbi, and V. M. Fowler. Aberrant myofibril assembly in tropomodulin1 null mice leads to aborted heart development and embryonic lethality. J. Cell Biol. 163:1033–1044, 2003.

    Article  Google Scholar 

  13. Gokhin, D. S., R. A. Lewis, C. R. McKeown, R. B. Nowak, N. E. Kim, R. S. Littlefield, R. L. Lieber, and V. M. Fowler. Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology. J. Cell Biol. 189:95–109, 2010.

    Article  Google Scholar 

  14. Hayes, J. D., and L. I. McLellan. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31:273–300, 1999.

    Article  Google Scholar 

  15. Liu, S. C., L. H. Derick, and J. Palek. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 104:527–536, 1987.

    Article  Google Scholar 

  16. McKeown, C. R., R. B. Nowak, J. Moyer, M. A. Sussman, and V. M. Fowler. Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development. Circ. Res. 103:1241–1248, 2008.

    Article  Google Scholar 

  17. Moyer, J. D., R. B. Nowak, N. E. Kim, S. K. Larkin, L. L. Peters, J. Hartwig, F. A. Kuypers, and V. M. Fowler. Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of tropomodulin 3 in red blood cells and disruption of the membrane skeleton. Blood 116:2590–2599, 2010.

    Article  Google Scholar 

  18. Shen, B. W., R. Josephs, and T. L. Steck. Ultrastructure of unit fragments of the skeleton of the human erythrocyte membrane. J. Cell Biol. 99:810–821, 1984.

    Article  Google Scholar 

  19. Shen, B. W., R. Josephs, and T. L. Steck. Ultrastructure of the intact skeleton of the human erythrocyte membrane. J. Cell Biol. 102:997–1006, 1986.

    Article  Google Scholar 

  20. Sung, L. A. Molecular basis of cell membrane mechanics. In: An Introductory Text to Bioengineering, edited by S. Chien, P. C. Y. Chen, and Y. C. Fung. Singapore: World Scientific Publishing Co., 2009, pp. 117–129.

    Google Scholar 

  21. Sung, L. A., and J. J. Lin. Erythrocyte tropomodulin binds to the N-terminus of hTM5, a tropomyosin isoform encoded by the gamma-tropomyosin gene. Biochem. Biophys. Res. Commun. 201:627–634, 1994.

    Article  Google Scholar 

  22. Sung, L. A., and C. Vera. Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann. Biomed. Eng. 31:1314–1326, 2003.

    Article  Google Scholar 

  23. Sung, L. A., V. M. Fowler, K. Lambert, M. A. Sussman, D. Karr, and S. Chien. Molecular cloning and characterization of human fetal liver tropomodulin. A tropomyosin-binding protein. J. Biol. Chem. 267:2616–2621, 1992.

    Google Scholar 

  24. Sung, L. A., K. M. Gao, L. J. Yee, C. J. Temm-Grove, D. M. Helfman, J. J. Lin, and M. Mehrpouryan. Tropomyosin isoform 5b is expressed in human erythrocytes: implications of tropomodulin-TM5 or tropomodulin-TM5b complexes in the protofilament and hexagonal organization of membrane skeletons. Blood 95:1473–1480, 2000.

    Google Scholar 

  25. Sussman, M. A., S. Baque, C. S. Uhm, M. P. Daniels, R. L. Price, D. Simpson, L. Terracio, and L. Kedes. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ. Res. 82:94–105, 1998.

    Google Scholar 

  26. Sussman, M. A., S. Welch, N. Cambon, R. Klevitsky, T. E. Hewett, R. Price, S. A. Witt, and T. R. Kimball. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J. Clin. Invest. 101:51–61, 1998.

    Article  Google Scholar 

  27. Watakabe, A., R. Kobayashi, and D. M. Helfman. N-tropomodulin: a novel isoform of tropomodulin identified as the major binding protein to brain tropomyosin. J. Cell Sci. 109:2299–2310, 1996.

    Google Scholar 

  28. Waugh, R. E., and P. Agre. Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J. Clin. Invest. 81:133–141, 1988.

    Article  Google Scholar 

  29. Weber, A., C. R. Pennise, G. G. Babcock, and V. M. Fowler. Tropomodulin caps the pointed ends of actin filaments. J. Cell Biol. 127:1627–1635, 1994.

    Article  Google Scholar 

  30. Yao, W., and L. A. Sung. Erythrocyte tropomodulin isoforms with and without the N-terminal actin-binding domain. J. Biol. Chem. 285:31408–31417, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shu Chien for inspiration, encouragement, and serving on Terrell Green’s Ph.D. dissertation committee. Terrell Green was supported by the Ford Foundation, Eugene Cota-Robles Fellowship, NIH Training Grant T32 HL007089, and the Siebel Scholars Foundation. Reagents were partially supported by the NIH Grant ARRA 23102A. Dr. Mark Sussman's work was supported by 2R01HL067245. We used the Biotech Core of the Bioengineering Department, animal facilities at UCSD (for breeding and whole blood count analyses), and the micropipette aspiration system established by Dr. Shu Chien and Dr. Kuo-Li Paul Sung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanping Amy Sung.

Additional information

Associate Editor John Shyy and Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, T., Vera, C., Sussman, M.A. et al. Mechanobiology of Erythrocytes from Adult Mice Homozygous for a Targeted Disruption of the E-Tmod Gene at Exon 1. Cel. Mol. Bioeng. 4, 637–647 (2011). https://doi.org/10.1007/s12195-011-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0203-x

Keywords

Navigation