Skip to main content
Log in

Shear-Stress Activation of AMP-Activated Protein Kinase in Endothelial Homeostasis

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

As the interface between circulation and the vessel wall, the endothelium dynamically responds to shear-stress imposed by blood flow, which is essential to maintain vascular homeostasis. Results from in vitro studies of cultured vascular endothelial cells and in vivo examination of animal models suggest that adenosine monophosphate-activated protein kinase (AMPK), a master regulator of energy metabolism, is activated by shear stress. Thus, beyond its role in orchestrating cellular energy balance, shear-stress-activated AMPK is crucial for maintaining endothelial homeostasis by its regulation of key molecules such as endothelial nitric oxide synthase (eNOS), Kruppel-like factor 2 (KLF2), and mammalian target of rapamycin (mTOR). Collectively, shear-stress-activated AMPK enhances nitric oxide bioavailability, arrests the cell cycle, and upregulates anti-oxidative and anti-inflammatory genes. These regulations contribute to the atheroprotective effects. This review summarizes some of the recent findings of these mechanotransduction mechanisms, which indicate that AMPK plays an important role in vascular homeostasis in addition to its involvement in energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Akimoto, S., M. Mitsumata, T. Sasaguri, and Y. Yoshida. Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ. Res. 86:185–190, 2000.

    Google Scholar 

  2. Alba, G., R. El Bekay, M. Alvarez-Maqueda, P. Chacon, A. Vega, J. Monteseirin, C. Santa Maria, E. Pintado, F. J. Bedoya, R. Bartrons, and F. Sobrino. Stimulators of AMP-activated protein kinase inhibit the respiratory burst in human neutrophils. FEBS Lett. 573:219–225, 2004.

    Article  Google Scholar 

  3. Amodeo, G. A., M. J. Rudolph, and L. Tong. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature. 449:492–495, 2007.

    Article  Google Scholar 

  4. Andersson, U., K. Filipsson, C. R. Abbott, A. Woods, K. Smith, S. R. Bloom, D. Carling, and C. J. Small. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279:12005–12008, 2004.

    Article  Google Scholar 

  5. Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22:12–13, 1997.

    Article  Google Scholar 

  6. Blackwell, K. A., J. P. Sorenson, D. M. Richardson, L. A. Smith, O. Suda, K. Nath, and Z. S. Katusic. Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterin. Am. J. Physiol. Heart Circ. Physiol. 287:H2448–H2453, 2004.

    Article  Google Scholar 

  7. Boo, Y. C., G. Sorescu, N. Boyd, I. Shiojima, K. Walsh, J. Du, and H. Jo. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J. Biol. Chem. 277:3388–3396, 2002.

    Article  Google Scholar 

  8. Boo, Y. C., G. P. Sorescu, P. M. Bauer, D. Fulton, B. E. Kemp, D. G. Harrison, W. C. Sessa, and H. Jo. Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Free Radic. Biol. Med. 35:729–741, 2003.

    Article  Google Scholar 

  9. Browne, G. J., S. G. Finn, and C. G. Proud. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J. Biol. Chem. 279:12220–12231, 2004.

    Article  Google Scholar 

  10. Brunn, G. J., C. C. Hudson, A. Sekulic, J. M. Williams, H. Hosoi, P. J. Houghton, J. C. Lawrence, Jr., and R. T. Abraham. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101, 1997.

    Article  Google Scholar 

  11. Carling, D., P. R. Clarke, V. A. Zammit, and D. G. Hardie. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur. J. Biochem. 186:129–136, 1989.

    Article  Google Scholar 

  12. Caro, C. G. Discovery of the role of wall shear in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29:158–161, 2009.

    Article  Google Scholar 

  13. Ceolotto, G., A. Gallo, I. Papparella, L. Franco, E. Murphy, E. Iori, E. Pagnin, G. P. Fadini, M. Albiero, A. Semplicini, and A. Avogaro. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 27:2627–2633, 2007.

    Article  Google Scholar 

  14. Chen, Z., I. C. Peng, X. Cui, Y. S. Li, S. Chien, and J. Y. Shyy. Shear stress, SIRT1, and vascular homeostasis. Proc. Natl Acad. Sci. USA 107:10268–10273, 2010.

    Article  Google Scholar 

  15. Chen, Z., I. C. Peng, W. Sun, M. I. Su, P. H. Hsu, Y. Fu, Y. Zhu, K. DeFea, S. Pan, M. D. Tsai, and J. Y. Shyy. AMP-activated protein kinase functionally phosphorylates endothelial nitric oxide synthase Ser633. Circ. Res. 104:496–505, 2009.

    Article  Google Scholar 

  16. Chen, Z. P., K. I. Mitchelhill, B. J. Michell, D. Stapleton, I. Rodriguez-Crespo, L. A. Witters, D. A. Power, P. R. de Ortiz Montellano, and B. E. Kemp. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 443:285–289, 1999.

    Article  Google Scholar 

  17. Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am. J. Physiol. Heart Circ. Physiol. 292:H1209–H1224, 2007.

    Article  Google Scholar 

  18. Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91:327–387, 2011.

    Article  Google Scholar 

  19. Chiu, J. J., P. L. Lee, C. N. Chen, C. I. Lee, S. F. Chang, L. J. Chen, S. C. Lien, Y. C. Ko, S. Usami, and S. Chien. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-[alpha] in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24:73–79, 2004.

    Article  Google Scholar 

  20. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl Acad. Sci. USA 83:2114–2117, 1986.

    Article  Google Scholar 

  21. De Keulenaer, G. W., D. C. Chappell, N. Ishizaka, R. M. Nerem, R. W. Alexander, and K. K. Griendling. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ. Res. 82:1094–1101, 1998.

    Google Scholar 

  22. Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605, 1999.

    Article  Google Scholar 

  23. Dixit, M., E. Bess, B. Fisslthaler, F. V. Hartel, T. Noll, R. Busse, and I. Fleming. Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. Cardiovasc. Res. 77:160–168, 2008.

    Article  Google Scholar 

  24. Dolinsky, V. W., J. S. Morton, T. Oka, I. Robillard-Frayne, M. Bagdan, G. D. Lopaschuk, C. Des Rosiers, K. Walsh, S. T. Davidge, and J. R. Dyck. Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56:412–421, 2010.

    Article  Google Scholar 

  25. Ewart, M. A., C. F. Kohlhaas, and I. P. Salt. Inhibition of tumor necrosis factor alpha-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler. Thromb. Vasc. Biol. 28:2255–2257, 2008.

    Article  Google Scholar 

  26. Fisslthaler, B., and I. Fleming. Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ. Res. 105:114–127, 2009.

    Article  Google Scholar 

  27. Fisslthaler, B., I. Fleming, B. Keseru, K. Walsh, and R. Busse. Fluid shear stress and NO decrease the activity of the hydroxy-methylglutaryl coenzyme A reductase in endothelial cells via the AMP-activated protein kinase and FoxO1. Circ. Res. 100:e12–e21, 2007.

    Article  Google Scholar 

  28. Fledderus, J. O., R. A. Boon, O. L. Volger, H. Hurttila, S. Yla-Herttuala, H. Pannekoek, A. L. Levonen, and A. J. Horrevoets. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 28:1339–1346, 2008.

    Article  Google Scholar 

  29. Fulton, D., J. P. Gratton, T. J. McCabe, J. Fontana, Y. Fujio, K. Walsh, T. F. Franke, A. Papapetropoulos, and W. C. Sessa. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601, 1999.

    Article  Google Scholar 

  30. Garton, A. J., D. G. Campbell, D. Carling, D. G. Hardie, R. J. Colbran, and S. J. Yeaman. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179:249–254, 1989.

    Article  Google Scholar 

  31. Gracia-Sancho, J., G. Villarreal, Jr., Y. Zhang, and G. Garcia-Cardena. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc. Res. 85:514–519, 2010.

    Article  Google Scholar 

  32. Guo, D., S. Chien, and J. Y. Shyy. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ. Res. 100:564–571, 2007.

    Article  Google Scholar 

  33. Gwinn, D. M., D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery, D. S. Vasquez, B. E. Turk, and R. J. Shaw. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell. 30:214–226, 2008.

    Article  Google Scholar 

  34. Ha, J., and K. H. Kim. Inhibition of fatty acid synthesis by expression of an acetyl-CoA carboxylase-specific ribozyme gene. Proc. Natl Acad. Sci. USA 91:9951–9955, 1994.

    Article  Google Scholar 

  35. Hardie, D. G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 8:774–785, 2007.

    Article  Google Scholar 

  36. Hardie, D. G., and D. Carling. The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur. J. Biochem. 246:259–273, 1997.

    Article  Google Scholar 

  37. Hawley, S. A., J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd, T. P. Makela, D. R. Alessi, and D. G. Hardie. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28, 2003.

    Article  Google Scholar 

  38. Hawley, S. A., D. A. Pan, K. J. Mustard, L. Ross, J. Bain, A. M. Edelman, B. G. Frenguelli, and D. G. Hardie. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9–19, 2005.

    Article  Google Scholar 

  39. Hayashi, T., M. F. Hirshman, E. J. Kurth, W. W. Winder, and L. J. Goodyear. Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373, 1998.

    Article  Google Scholar 

  40. Jakobsen, S. N., D. G. Hardie, N. Morrice, and H. E. Tornqvist. 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J. Biol. Chem. 276:46912–46916, 2001.

    Article  Google Scholar 

  41. Kahn, B. B., T. Alquier, D. Carling, and D. G. Hardie. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25, 2005.

    Article  Google Scholar 

  42. Kubota, N., W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, and T. Kadowaki. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6:55–68, 2007.

    Article  Google Scholar 

  43. Kukidome, D., T. Nishikawa, K. Sonoda, K. Imoto, K. Fujisawa, M. Yano, H. Motoshima, T. Taguchi, T. Matsumura, and E. Araki. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127, 2006.

    Article  Google Scholar 

  44. Leclerc, I., C. Lenzner, L. Gourdon, S. Vaulont, A. Kahn, and B. Viollet. Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes 50:1515–1521, 2001.

    Article  Google Scholar 

  45. Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.

    Article  Google Scholar 

  46. Lin, K., P. P. Hsu, B. P. Chen, S. Yuan, S. Usami, J. Y. Shyy, Y. S. Li, and S. Chien. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc. Natl Acad. Sci. USA 97:9385–9389, 2000.

    Article  Google Scholar 

  47. McGarry, J. D., G. F. Leatherman, and D. W. Foster. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J. Biol. Chem. 253:4128–4136, 1978.

    Google Scholar 

  48. Momcilovic, M., S. P. Hong, and M. Carlson. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem. 281:25336–25343, 2006.

    Article  Google Scholar 

  49. Niebauer, J., and J. P. Cooke. Cardiovascular effects of exercise: role of endothelial shear stress. J. Am. Coll. Cardiol. 28:1652–1660, 1996.

    Article  Google Scholar 

  50. Parmar, K. M., H. B. Larman, G. Dai, Y. Zhang, E. T. Wang, S. N. Moorthy, J. R. Kratz, Z. Lin, M. K. Jain, M. A. Gimbrone, Jr., and G. Garcia-Cardena. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116:49–58, 2006.

    Article  Google Scholar 

  51. Polekhina, G., A. Gupta, B. J. van Denderen, S. C. Feil, B. E. Kemp, D. Stapleton, and M. W. Parker. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13:1453–1462, 2005.

    Article  Google Scholar 

  52. Russell, III, R. R., R. Bergeron, G. I. Shulman, and L. H. Young. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277:H643–H649, 1999.

    Google Scholar 

  53. Ruvinsky, I., and O. Meyuhas. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem. Sci. 31:342–348, 2006.

    Article  Google Scholar 

  54. Sakamoto, K., A. McCarthy, D. Smith, K. A. Green, D. Grahame Hardie, A. Ashworth, and D. R. Alessi. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 24:1810–1820, 2005.

    Article  Google Scholar 

  55. Sako, K., S. Fukuhara, T. Minami, T. Hamakubo, H. Song, T. Kodama, A. Fukamizu, J. S. Gutkind, G. Y. Koh, and N. Mochizuki. Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2. J. Biol. Chem. 284:5592–5601, 2009.

    Article  Google Scholar 

  56. Schwarz, G., G. Callewaert, G. Droogmans, and B. Nilius. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J. Physiol. 458:527–538, 1992.

    Google Scholar 

  57. Scott, J. W., S. A. Hawley, K. A. Green, M. Anis, G. Stewart, G. A. Scullion, D. G. Norman, and D. G. Hardie. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113:274–284, 2004.

    Google Scholar 

  58. SenBanerjee, S., Z. Lin, G. B. Atkins, D. M. Greif, R. M. Rao, A. Kumar, M. W. Feinberg, Z. Chen, D. I. Simon, F. W. Luscinskas, T. M. Michel, M. A. Gimbrone, Jr., G. Garcia-Cardena, and M. K. Jain. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J. Exp. Med. 199:1305–1315, 2004.

    Article  Google Scholar 

  59. Soucy, K. G., S. Ryoo, A. Benjo, H. K. Lim, G. Gupta, J. S. Sohi, J. Elser, M. A. Aon, D. Nyhan, A. A. Shoukas, and D. E. Berkowitz. Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness. J. Appl. Physiol. 101:1751–1759, 2006.

    Article  Google Scholar 

  60. Sullivan, J. E., K. J. Brocklehurst, A. E. Marley, F. Carey, D. Carling, and R. K. Beri. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 353:33–36, 1994.

    Article  Google Scholar 

  61. Townley, R., and L. Shapiro. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315:1726–1729, 2007.

    Article  Google Scholar 

  62. Vaitkevicius, P. V., J. L. Fleg, J. H. Engel, F. C. O’Connor, J. G. Wright, L. E. Lakatta, F. C. Yin, and E. G. Lakatta. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation 88:1456–1462, 1993.

    Google Scholar 

  63. Van Vliet, B. N., L. L. Chafe, and J. P. Montani. Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6J control mice. J. Physiol. 549:313–325, 2003.

    Article  Google Scholar 

  64. Wilkinson, I. B., H. MacCallum, J. R. Cockcroft, and D. J. Webb. Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br. J. Clin. Pharmacol. 53:189–192, 2002.

    Article  Google Scholar 

  65. Wojtaszewski, J. F., P. Nielsen, B. F. Hansen, E. A. Richter, and B. Kiens. Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528(Pt. 1):221–226, 2000.

    Article  Google Scholar 

  66. Wong, A. K., J. Howie, J. R. Petrie, and C. C. Lang. AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin. Sci. (Lond.) 116:607–620, 2009.

    Article  Google Scholar 

  67. Woods, A., K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic, S. R. Johnstone, M. Carlson, and D. Carling. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33, 2005.

    Article  Google Scholar 

  68. Xie, Z., Y. Dong, R. Scholz, D. Neumann, and M. H. Zou. Phosphorylation of LKB1 at serine 428 by protein kinase C-zeta is required for metformin-enhanced activation of the AMP-activated protein kinase in endothelial cells. Circulation 117:952–962, 2008.

    Article  Google Scholar 

  69. Xie, Z., Y. Dong, M. Zhang, M. Z. Cui, R. A. Cohen, U. Riek, D. Neumann, U. Schlattner, and M. H. Zou. Activation of protein kinase C zeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J. Biol. Chem. 281:6366–6375, 2006.

    Article  Google Scholar 

  70. Xie, Z., J. Zhang, J. Wu, B. Viollet, and M. H. Zou. Upregulation of mitochondrial uncoupling protein-2 by the AMP-activated protein kinase in endothelial cells attenuates oxidative stress in diabetes. Diabetes 57:3222–3230, 2008.

    Article  Google Scholar 

  71. Xu, Q., X. Hao, Q. Yang, and L. Si. Resveratrol prevents hyperglycemia-induced endothelial dysfunction via activation of adenosine monophosphate-activated protein kinase. Biochem. Biophys. Res. Commun. 388:389–394, 2009.

    Article  Google Scholar 

  72. Young, A., W. Wu, W. Sun, H. Benjamin Larman, N. Wang, Y. S. Li, J. Y. Shyy, S. Chien, and G. Garcia-Cardena. Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler. Thromb. Vasc. Biol. 29:1902–1908, 2009.

    Article  Google Scholar 

  73. Zhang, Y., T. S. Lee, E. M. Kolb, K. Sun, X. Lu, F. M. Sladek, G. S. Kassab, T. Garland, Jr., and J. Y. Shyy. AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler. Thromb. Vasc. Biol. 26:1281–1287, 2006.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Institutes of Health grants HL89940 and HL106579 (J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Y.-J. Shyy.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shyy, J.YJ., Chen, Z., Wu, W. et al. Shear-Stress Activation of AMP-Activated Protein Kinase in Endothelial Homeostasis. Cel. Mol. Bioeng. 4, 538–546 (2011). https://doi.org/10.1007/s12195-011-0200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0200-0

Keywords

Navigation