Skip to main content

Advertisement

Log in

Regulation of Hepatic Cell Mobilization in Experimental Myocardial Ischemia

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Myocardial ischemia induces cardiomyocyte injury and death, resulting in impairment of cardiac function. The adult cardiomyocytes possess a limited capacity of protection in myocardial ischemia, and nonmyocytic cells can be activated to support myocardial protection. We recently demonstrated that hepatic cells were able to upregulate genes encoding secreted proteins and were mobilized to the circulatory system, potentially contributing to myocardial protection against ischemic injury. In this investigation, we tested the potential mechanisms by which hepatic cells were mobilized in experimental myocardial ischemia. Following the induction of myocardial ischemia, hepatic cells, including hepatocytes and biliary epithelial cells, were mobilized to the circulatory system with a peak population 1.9 ± 0.4% at day 5. The cytokine IL-6 was upregulated in the ischemic myocardium as well as the serum. IL-6 promoted leukocyte retention in the liver as demonstrated by an increase in liver-retained leukocytes in myocardial ischemia in wild type mice, reduced leukocytes in IL-6−/− mice, and restoration of leukocyte retention in response to IL-6 administration to IL-6−/− mice. Liver-retained leukocytes exhibited upregulation of MMP-2, which in turn mediated hepatic cell mobilization by degrading extracellular matrix. These observations suggest that IL-6-stimulated leukocytes mediate the mobilization of hepatic cells via releasing MMP-2 in myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alison, M., M. Golding, El.-N. Lalani, and C. Sarraf. Wound healing in the liver with particular reference to stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353:877–894, 1998.

    Article  Google Scholar 

  2. Angel, P. M., and M. Karin. The role of Jun, Fos, and AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta. 1072:129–157, 1991.

    Google Scholar 

  3. Appenheimer, M. M., R. A. Girard, Q. Chen, W.-C. Wang, K. C. Bankert, J. Hardison, M. D. Bain, F. Ridgley, E. J. Sarcione, S. Buitrago, S. S. Kothlow, B. Kaspers, J. Robert, S. Rose-John, H. Baumann, and S. S. Evans. Conservation of IL-6 trans-signaling mechanisms controlling L-selectin adhesion by fever-range thermal stress. Eur. J. Immunol. 37:2856–2867, 2007.

    Article  Google Scholar 

  4. Bergman, M. R., S. Cheng, N. Honbo, L. Piacentini, J. S. Karliner, and D. H. Lovett. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB heterodimers. Biochem. J. 369:485–496, 2003.

    Article  Google Scholar 

  5. Biasucci, L. M., A. Vitelli, G. Liuzzo, S. Altamura, G. Caligiuri, C. Monaco, A. G. Rebuzzi, G. Ciliberto, and A. Maseri. Elevated levels of interleukin-6 in unstable angina. Circulation 94:874–877, 1996.

    Google Scholar 

  6. Brunner, S., J. Winogradow, B. C. Huber, M. M. Zaruba, R. Fischer, R. David, G. Assmann, N. Herbach, R. Wanke, J. Mueller-Hoecker, and W. M. Franz. Erythropoietin administration after myocardial infarction in mice attenuates ischemic cardiomyopathy associated with enhanced homing of bone marrow-derived progenitor cells via the CXCR-4/SDF-1 axis. FASEB J. 23:351–361, 2009.

    Article  Google Scholar 

  7. Chen, Q., W.-C. Wang, R. Bruce, H. Li, D. M. Schleider, M. J. Mulbury, M. D. Bain, P. K. Wallace, H. Baumann, and S. S. Evans. Central role of IL-6 receptor signal-transducing chain gp130 in activation of L-selectin adhesion by fever-range thermal stress. Immunity 20:59–70, 2004.

    Article  Google Scholar 

  8. Cressman, D. E., L. E. Greenbaum, R. A. DeAngelis, G. Ciliberto, E. E. Furth, V. Poli, and R. Taub. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383, 1996.

    Google Scholar 

  9. Dill, T., V. Schächinger, A. Rolf, S. Möllmann, H. Thiele, H. Tillmanns, B. Assmus, S. Dimmeler, A. M. Zeiher, and C. Hamm. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am. Heart J. 157:541–547, 2009.

    Article  Google Scholar 

  10. Fausto, N., and J. S. Campbell. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 120:117–130, 2003.

    Article  Google Scholar 

  11. Fazel, S. S., L. Chen, D. Angoulvant, S. H. Li, R. D. Weisel, A. Keating, and R. K. Li. Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB J. 22:930–940, 2008.

    Article  Google Scholar 

  12. Fisman, E. Z., M. Benderly, R. J. Esper, S. Behar, V. Boyko, Y. Adler, D. Tanne, Z. Matas, and A. Tenenbaum. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am. J. Cardiol. 98:14–18, 2006.

    Article  Google Scholar 

  13. Forbes, S., P. Vig, R. Poulsom, H. Thomas, and M. Alison. Hepatic stem cells. J. Pathol. 197:510–518, 2002.

    Article  Google Scholar 

  14. Gyöngyösi, M., I. Lang, M. Dettke, G. Beran, S. Graf, H. Sochor, N. Nyolczas, S. Charwat, R. Hemetsberger, G. Christ, I. Edes, L. Balogh, K. T. Krause, K. Jaquet, K. H. Kuck, I. Benedek, T. Hintea, R. Kiss, I. Préda, V. Kotevski, H. Pejkov, S. Zamini, A. Khorsand, G. Sodeck, A. Kaider, G. Maurer, and D. Glogar. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat. Clin. Pract. Cardiovasc. Med. 6:70–81, 2009.

    Article  Google Scholar 

  15. Heinrich, P. C., I. Behrmann, G. Muller-Newen, F. Schaper, and L. Graeve. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334:297–314, 1998.

    Google Scholar 

  16. Hirano, T., K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, T. Matsuda, S. Kashiwamura, K. Nakajima, K. Koyama, and A. Iwamatsu. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76, 1986.

    Article  Google Scholar 

  17. Hofmann, U. B., J. R. Westphal, G. N. Van Muijen, and D. J. Ruiter. Matrix metalloproteinases in human melanoma. J. Invest. Dermatol. 115:337–344, 2000.

    Article  Google Scholar 

  18. Ii, M., H. Nishimura, A. Iwakura, A. Wecker, E. Eaton, T. Asahara, and D. W. Losordo. Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111:1114–1120, 2005.

    Article  Google Scholar 

  19. Iwakura, A., S. Shastry, C. Luedemann, H. Hamada, A. Kawamoto, R. Kishore, Y. Zhu, G. Qin, M. Silver, T. Thorne, L. Eaton, H. Masuda, T. Asahara, and D. W. Losordo. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation 113:1605–1614, 2006.

    Article  Google Scholar 

  20. Jurasz, P., G. Sawicki, M. Duszyk, J. Sawicka, C. Miranda, I. Mayers, and M. W. Radomski. Matrix metalloproteinase 2 in tumor cell-induced platelet aggregation: regulation by nitric oxide. Cancer Res. 61:376–382, 2001.

    Google Scholar 

  21. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J. P. Pelletier, and H. Fahmi. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7:33–42, 2011.

    Article  Google Scholar 

  22. Kopf, M., H. Baumann, G. Freer, M. Freudenberg, M. Lamers, T. Kishimoto, R. Zinkernagel, H. Bluethmann, and G. Köhler. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368:339–342, 1994.

    Article  Google Scholar 

  23. Kossakowska, A. E., D. R. Edwards, C. Prusinkiewicz, M. C. Zhang, D. Guo, S. J. Urbanski, T. Grogan, L. A. Marquez, and A. Janowska-Wieczorek. Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin’s lymphomas. Blood 94:2080–2089, 1999.

    Google Scholar 

  24. Kovalovich, K., W. Li, R. DeAngelis, L. E. Greenbaum, G. Ciliberto, and R. Taub. Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL. J. Biol. Chem. 276:26605–26613, 2001.

    Google Scholar 

  25. Kucia, M., B. Dawn, G. Hunt, Y. Guo, M. Wysoczynski, M. Majka, J. Ratajczak, F. Rezzoug, S. T. Ildstad, R. Bolli, and M. Z. Ratajczak. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ. Res. 95:1191–1199, 2004.

    Article  Google Scholar 

  26. Lee, J. G., S. Dahi, R. Mahimkar, N. L. Tulloch, M. A. Alfonso-Jaume, D. H. Lovett, and R. Sarkar. Intronic regulation of matrix metalloproteinase-2 revealed by in vivo transcriptional analysis in ischemia. Proc. Natl. Acad. Sci. USA. 102:16345–16350, 2005.

    Article  Google Scholar 

  27. Liu, S. Q., P. K. Alkema, C. Tieché, B. J. Tefft, D. Z. Liu, Y. C. Li, B. E. Sumpio, J. A. Caprini, and M. Paniagua. Negative regulation of monocyte adhesion to arterial elastic laminae by signal-regulatory protein alpha and SH2 domain-containing protein tyrosine phosphatase-1. J. Biol. Chem. 280:39294–39301, 2005.

    Article  Google Scholar 

  28. Liu, S. Q., B. J. Tefft, A. Zhang, L.-Q. Zhang, and Y. H. Wu. Formation of smooth muscle α actin filaments in CD34-positive bone marrow cells in elastic lamina-dominant matrix of arteries. Matrix Biol. 27:282–294, 2008.

    Article  Google Scholar 

  29. Liu, S. Q., and Y. H. Wu. Cardioprotective effects of hepatic cell-derived factors in myocardial ischemia. Curr. Topics Biochem. Res. 11:65–77, 2009.

    Google Scholar 

  30. Liu, S. Q., and Y. H. Wu. Liver cell-mediated alleviation of acute ischemic myocardial injury. Front. Biosci. 2:711–724, 2010.

    Article  Google Scholar 

  31. Lunde, K., S. Solheim, S. Aakhus, H. Arnesen, M. Abdelnoor, T. Egeland, K. Endresen, A. Ilebekk, A. Mangschau, J. G. Fjeld, H. J. Smith, E. Taraldsrud, H. K. Grøgaard, R. Bjørnerheim, M. Brekke, C. Müller, E. Hopp, A. Ragnarsson, J. E. Brinchmann, and K. Forfang. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355:1199–1209, 2006.

    Article  Google Scholar 

  32. Malin, S. A., B. M. Davis, and D. C. Molliver. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat. Protocols 2:152–160, 2007.

    Article  Google Scholar 

  33. Michalopoulos, G. K., and M. C. DeFrances. Liver regeneration. Science 276:60–66, 1997.

    Article  Google Scholar 

  34. Murphy, G. Matrix metalloproteinases and their inhibitors. Acta Orthop. Scand. 266(Suppl):55–63, 1995.

    Google Scholar 

  35. Navarro-González, J. F., C. Mora-Fernández, M. M. de Fuentes, and J. García-Pérez. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 2011 May 3. [Epub ahead of print]

  36. Orlic, D., J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk, F. Quaini, B. Nadal-Ginard, D. M. Bodine, A. Leri, and P. Anversa. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. PNAS 98:10344–10349, 2001.

    Article  Google Scholar 

  37. Osypiw, J. C., R. L. Allen, and D. Billington. Subpopulations of rat hepatocytes separated by Percoll density-gradient centrifugation show characteristics consistent with different acinar locations. Biochem. J. 304:617–624, 1994.

    Google Scholar 

  38. Postic, C., M. Shiota, K. D. Niswender, T. L. Jetton, Y. Chen, J. M. Moates, K. D. Shelton, J. Lindner, A. D. Cherrington, and M. A. Magnuson. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic β cell-specific gene knock-outs using cre recombinase. J. Biol. Chem. 274:305–315, 1999.

    Article  Google Scholar 

  39. Schlüter, K. D., and D. Schreiber. Adult ventricular cardiomyocytes: isolation and culture. Methods Mol. Biol. 290:305–314, 2005.

    Google Scholar 

  40. Seglen, P. O. Hepatocyte suspensions and cultures as tools in experimental carcinogenesis. J. Toxicol. Environ. Health 5:551–560, 1979.

    Article  Google Scholar 

  41. Sehgal, P. B., A. Zilberstein, R. M. Ruggieri, L. T. May, A. Ferguson-Smith, D. L. Slate, M. Revel, and F. H. Ruddle. Human chromosome 7 carries the beta-2 interferon gene. Proc. Natl Acad. Sci. USA. 83:5219–5222, 1986.

    Article  Google Scholar 

  42. Skinner, M., S. Qu, C. Moore, and R. Wisdom. Transcriptional activation and transformation by FosB protein require phosphorylation of the carboxyl-terminal activation domain. Mol. Cell. Biol. 17:2372–2380, 1997.

    Google Scholar 

  43. Spooren, A., K. Kolmus, G. Laureys, R. Clinckers, J. De Keyser, G. Haegeman, S. Gerlo. Interleukin-6, a mental cytokine. Brain Res. Rev. 2011 Jan 14. [Epub ahead of print]

  44. Srinivas, S., T. Watanabe, C. S. Lin, C. M. William, Y. Tanabe, T. M. Jessell, and F. Costantini. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4, 2001.

    Google Scholar 

  45. Taub, R. Liver regeneration: from myth to mechanism. Nat. Rev. Mol. Cell Biol. 5:836–847, 2004.

    Article  Google Scholar 

  46. Zar, J. H. Biostatistical Analysis. 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1984.

Download references

Acknowledgments

We would like to thank Dr. Stephen I. Levin of Northwestern University and Dr. Yan Chun Li of The University of Chicago for insightful suggestions for constructing the genetically modified mouse models. This work was supported by the National Science Foundation and American Heart Association.

Conflicts of interest

No funds in any form have been or will be received from a commercial party for the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Q. Liu.

Additional information

Associate Editors John Shyy and Yingxiao Wang oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S.Q., Tefft, B.J., Zhang, B. et al. Regulation of Hepatic Cell Mobilization in Experimental Myocardial Ischemia. Cel. Mol. Bioeng. 4, 693–707 (2011). https://doi.org/10.1007/s12195-011-0197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-011-0197-4

Keywords

Navigation